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Decision makers are often unable to choose between the options
that they are offered. In these settings they typically defer their
decision, that is, delay the decision to a later point in time or avoid
the decision altogether. In this paper, we outline eight behavioral
findings regarding the causes and consequences of choice deferral
that cognitive theories of decision making should be able to cap-
ture. We show that these findings can be accounted for by a
deferral-based time limit applied to existing sequential sampling
models of preferential choice. Our approach to modeling deferral
as a time limit in a sequential sampling model also makes a num-
ber of novel predictions regarding the interactions between choice
probabilities, deferral probabilities, and decision times, and we
confirm these predictions in an experiment. Choice deferral is a
key feature of everyday decision making, and our paper illustrates
how established theoretical approaches can be used to understand
the cognitive underpinnings of this important behavioral
phenomenon.

� 2016 The Authors. Published by Elsevier Inc. This is an open
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1. Introduction

Cognitive models provide a powerful, theoretically constrained approach to studying preferential
decision making (Busemeyer & Johnson, 2004; Newell & Bröder, 2008). These models formally
describe the psychological mechanisms underlying choice, and in doing so are able to explain a variety
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of behavioral findings, including decoy effects, reference dependence, anchoring effects, and risky
choice effects (Bhatia, 2013, 2014; Bogacz, Usher, Zhang, & McClelland, 2007; Busemeyer &
Townsend, 1993; Diederich, 1997; Glöckner & Betsch, 2008; Pleskac & Busemeyer, 2010; Rangel &
Hare, 2010; Roe, Busemeyer, & Townsend, 2001; Stewart, Chater, & Brown, 2006; Trueblood, Brown,
& Heathcote, 2014; Usher & McClelland, 2004). For this reason, cognitive models are rapidly replacing
traditional utility-based approaches as desirable theoretical tools for understanding preferential
choice behavior (see Oppenheimer & Kelso, 2015 for a discussion).

Theories of decision making within the cognitive tradition typically make predictions about choice
probabilities, decision times, attention to external information or information stored in memory, and
judgments of confidence. These are some of the most important behavioral, cognitive, and metacog-
nitive outcomes in a decision, and modeling these outcomes is necessary in order to characterize
the choice process. That said, many existing theories of decision making are incomplete. They are lar-
gely unable to capture the causes and consequences of choice deferral, that is, the decision to disen-
gage from the choice task without selecting any available options (but see Busemeyer, Johnson, &
Jessup, 2006; Jessup, Veinott, Todd, & Busemeyer, 2009; White, Hoffrage, & Reisen, 2015). The failure
to decide is a fundamental feature of everyday preferential decision making. Most consumer, financial,
health, food, and entertainment choices are not forced, and decision makers can often wait to make
the choice at a later point in time, or even completely avoid the choice in favor of the status quo or
default.

The importance of deferral as a decision outcome was recognized by Tversky and Shafir (1992) who
showed that the probability of choice deferral reduces in the presence of dominated decoys. Since then
a large literature in psychology and marketing has attempted to characterize the determinants of
choice deferral, and the consequences of allowing choice to be deferred (see Anderson, 2003;
Chernev, Böckenholt, & Goodman, 2015; Scheibehenne, Greifeneder, & Todd, 2010 for reviews). This
work has established that the likelihood of choice deferral depends not only on dominance relations,
but also on variables such as option desirability, attribute commonality, and attribute alignability (e.g.
Chernev, 2005; Chernev & Hamilton, 2009; Dhar, 1997; Dhar & Sherman, 1996; Gourville & Soman,
2005; White & Hoffrage, 2009; White et al., 2015; also Tversky & Shafir, 1992). Additionally the mere
presence of deferral as a feasible outcome in the choice task can affect the relative choice probabilities
of the available options, and reverse certain behavioral effects (Dhar & Simonson, 2003).

Formally modeling choice deferral involves a departure from the assumption of forced choice,
which is standard in cognitive decision making research. Besides this, it fits very cleanly into the gen-
eral decision modeling paradigm. Many existing models of decision making already make explicit pre-
dictions regarding variables such as dominance, desirability, attribute commonality, and attribute
alignability; variables that also characterize the determinants and consequences of choice deferral.
It may be possible to modify one of these models to successfully predict key findings regarding choice
deferral.

We find that this is indeed the case. In this paper, we study the properties of a deferral-based time
limit, initially suggested by Jessup et al. (2009). This mechanism applies to sequential sampling mod-
els, for which it generates deferral when a decision threshold is not crossed by a particular time. In the
first part of the paper we implement this time limit in Bhatia’s (2013) associative accumulation model
(AAM), which serves as a convenient back-end model for studying the relationship between deferral
and the various features of the choice set. Using the choice options and parameter values assumed in
Bhatia (2013) we find that the proposed mechanism is able provide a parsimonious explanation for
eight different existing behavioral effects regarding choice deferral. AAM is not the only back-end
model that is able to account for these effects, and we show that a more restricted variant of AAM,
a leaky competitive accumulator (LCA) model (Usher & McClelland, 2001) can capture four of these
effects (and indeed, that these four effects emerge from the assumptions AAM adopts from LCA).

Additionally, our assumption of a deferral time limit within a sequential sampling model makes
strong, general predictions regarding decision times, and their relationship with choice and deferral
probabilities. These predictions are largely independent of the specific sequential sampling model
used to specify the accumulation process, and thus hold for AAM, LCA, and a number of related mod-
els. In the second half of the paper we develop a behavioral task to test these predictions. In this exper-
iment subjects make choices both with and without the option to defer, thus allowing us to make the
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necessary within subject comparisons. Our results from this experiment show that the deferral time
limit is successful in describing decision times and their relationship with choice deferral, and there-
fore presents a powerful approach to modifying models within the sequential sampling framework to
incorporate choice deferral. Additionally, by illustrating a robust relationship between deferral prob-
ability and decision time, this experiment highlights the need for a dynamic model of choice deferral
rather than one that is purely static.

Although there have been prior exploratory attempts at studying choice deferral using cognitive
models (Busemeyer et al., 2006; Jessup et al., 2009; White et al., 2015), this paper is the first to use
this approach to provide a comprehensive analysis of a large number of existing deferral-based effects,
and the first to test and confirm a predicted relationship between choice deferral and decision time. In
doing so, this paper extends the descriptive scope of the cognitive decision modeling framework to
include one of the most studied and most important effects in preferential choice research. It also
sheds light on the cognitive mechanisms that underlie behavior in everyday settings, in which choice
is not forced, and shows that a cohesive theoretical account of this behavior is in fact possible.
2. Choice deferral effects

Consider a decision maker who, one evening, turns on the television to watch a movie. In this set-
ting he finds that he has a choice between an action movie and a documentary. This choice is not
forced: The decision maker can disengage from the task and defer his choice, with the intention to
resume the decision at a later time, wait to come across other movies, or even forego watching a movie
(Anderson, 2003; Chernev et al., 2015; Dhar & Sherman, 1996; Iyengar & Lepper, 2000; Jessup et al.,
2009; Scheibehenne et al., 2010; Tversky & Shafir, 1992).

How do the options available in the choice task—in the above case, an action movie and a docu-
mentary—influence the probability of choice deferral? Conversely, how does the ability to defer choice
affect the underlying choice probabilities of these options? Most current cognitive decision models do
not consider free choice tasks, in which deferral is a feasible outcome. However these questions have
been tackled experimentally, in tasks in which decision makers are given two or more options along
with the ability to not make the decision (usually in the form of a response claiming that they cannot
decide or that they wish to search for more information). In this section we will summarize eight
experimental findings on the determinants and consequence of choice deferral that cognitive decision
models should be able to capture.

Before we do this, however, it is useful to precisely define the choice setting we are considering.
Choice deferral is typically studied in multi-attribute choice tasks, in which available choice options
are defined on various decision attributes. The overall desirability, or value, of an option is propor-
tional to the total desirability of its attributes, and the goal of the choice task is to select the choice
option with the highest desirability. In the above example, an action movie could be seen as having
high amounts of the ‘‘exciting” attribute whereas a documentary could be seen as having high
amounts of the ‘‘informative” attribute. Formally, we can represent each of these choice options as
a vector ofM attributes, xi = (xi1, xi2, . . . ,xiM). Here, xij is a scalar that represents the amount of attribute
j in choice option i, with xij assumed to be greater than or equal to zero. If the first two attributes are
exciting and informative, an action movie could be represented using a vector (10, 0, . . .) and a docu-
mentary could be represented using a vector (0, 10, . . .). Unless stated otherwise, we will assume that
all attributes in the examples used in this paper are equally valuable.

Any particular choice set can be written as {x1, x2, . . . ,xN}, where N is the total number of available
options. In settings where deferral is not allowed, and the choice is forced, we can write the probability
of choosing an option xi as Pr(xi |x1, x2, . . . ,xN). Likewise, in settings where deferral is allowed, and the
choice is free, we can write the probability of choosing an option xi as Pr(xi |x1, x2, . . . ,xN, D), and the
probability of deferring choice as Pr(D|x1, x2, . . . ,xN, D). Fig. 1 represents a hypothetical choice space
with choice options defined on two desirable attributes, and Table 1 summarizes the attribute values
of the options in this figure.
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Fig. 1. A collection of choice options defined on two desirable attributes. Deferral probabilities are a function of the specific
choice options offered to decision makers (Effects 1–5). Additionally, allowing decision makers to defer choice can affect the
underlying choice probabilities of these options (Effects 6–8).

Table 1
Summary of choice options used in examples.

Option Attribute

1 2 3 4

x1 7 3
x2 3 7
x3 6.5 2.5
x4 2.5 6.5
x5 7.5 3.5
x6 5 5
x7 10 0
x8 7 7 3 0
x9 7 7 0 3
x10 14 0 1.5 1.5
x11 0 14 1.5 1.5
x12 10 10 3 0
x13 10 10 0 3
x14 7 7 3 0
x15 7 3 7 0
x16 0 3 7 7
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2.1. Effect 1: dominance

Perhaps the earliest finding on the determinants of choice deferral in free choice pertains to the
presence of a dominated option. Particularly Tversky and Shafir (1992) found that choices between
two options were less likely to lead to deferral if one of the options was superior to the other on all
attributes, even when the values of the options were held constant. This is related to the asymmetric
dominance effect (Huber, Payne, & Puto, 1982), which many existing cognitive models have attempted
to capture (see also Effect 7). In Fig. 1, x1 = (7, 3) dominates x3 = (6.5, 2.5) but not x4 = (2.5, 6.5). Thus,
even though x3 and x4 have the same desirability, the dominance effect predicts a higher probability of
deferral when the decision maker is asked to choose between x1 and x4 compared to x1 and x3, that is,
Pr(D|x1, x4, D) > Pr(D|x1, x3, D).
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2.2. Effect 2: absolute desirability

In addition to dominance, Tversky and Shafir (1992) documented a second effect: Choices between
highly valuable options were less likely to lead to deferral than choices between relatively less valu-
able options, controlling for the differences in the values of the two options. In Fig. 1, x1 = (7, 3) and
x2 = (3, 7) are equally desirable, x3 = (6.5, 2.5) and x4 = (2.5, 6.5) are also equally desirable, and addi-
tionally x1 and x2 are more desirable than x3 and x4. In this setting, the absolute desirability effect sug-
gests a higher probability of deferral when deciding between x3 and x4 than between x1 and x2, that is
Pr(D|x3, x4, D) > Pr(D|x1, x2, D). Empirical evidence in support of this effect has also been documented
by Chernev and Hamilton (2009) and White and coauthors (White & Hoffrage, 2009; White et al.,
2015).
2.3. Effect 3: relative desirability

The relative desirability of available options has also been shown to affect the probability of choice
deferral. Particularly, Dhar (1997) has found that reducing the differences in the values of the available
options can increase the incidence of choice deferral, so that choice is especially likely to be deferred
when the available options are equally desirable. In Fig. 1, there is no difference in the average
desirability of x1 = (7, 3) and x2 = (3, 7), or the average desirability of x4 = (2.5, 6.5) and x5 = (7.5,
3.5) (both sets of choice pairs have an average amount of 5 units in each attribute per option).
However, these pairs of options differ in terms of their relative desirability. The values of x4 and x5
are substantially different (with x5 being much more desirable than x4), whereas the values of x1
and x2 are identical. In this setting, the relative desirability effect predicts a higher probability of
deferral in the decision between x1 and x2 compared to the decision between x4 and x5, that is Pr
(D|x1, x2, D) > Pr(D|x4, x5, D).

It is important to note that the effect of the relative desirability of options can be strong enough to
overpower the effect of the absolute desirability of options, outlined above. For example, Dhar (1997)
has found that replacing a desirable option in a choice set with an undesirable option can in fact
decrease the incidence of deferral, despite the fact that this replacement reduces the average desirabil-
ity of the choice set. White and coauthors (White & Hoffrage, 2009; White et al., 2015) provide addi-
tional evidence in support of this effect.
2.4. Effect 4: common and unique attributes

It is possible to increase the incidence of choice deferral even if dominance, absolute desirability,
and relative desirability are kept constant. This has been documented by Dhar and Sherman (1996)
who found that deferral is more likely in choices with common good but unique bad attributes,
compared to equivalent choices with common bad but unique good attributes. To illustrate this,
consider options x8 = (7, 7, 3, 0), x9 = (7, 7, 0, 3), x10 = (14, 0, 1.5, 1.5), x11 = (0, 14, 1.5, 1.5), where attri-
butes 1 and 2 are desirable, and attributes 3 and 4 are undesirable. Here, x8 and x9 have common
amounts of the desirable attribute, but unique amounts of the undesirable attributes. In contrast,
x10 and x11 have common amounts of the undesirable attributes, but unique amounts of the desirable
attributes. Besides these differences, these choice pairs are identical in terms of both their absolute
desirability and relative desirability (all four options have a total of 10 units of desirable attributes
and 3 units of undesirable attributes). In this setting, the common and unique attributes effect would
predict that deferral would be more likely in the choice between x8 and x9 compared to the choice
between x10 and x11, that is, Pr(D|x8, x9, D) > Pr(D|x10, x11, D). The options discussed here are summa-
rized in Table 1.

Note that it is not the case that common attributes are ignored in choices involving deferral.
Increasing the amount of desirable common attributes so as to increase the overall values of the avail-
able options reduce the incidence of deferral, as documented by Nagpal et al. (2011). This is consistent
with Effect 2, described above. For options x12 = (10, 10, 3, 0), and x13 = (10, 10, 0, 3), this effect would
predict that Pr(D|x8, x9, D) > Pr(D|x12, x13, D).
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2.5. Effect 5: alignability

A related determinant of choice deferral involves the alignability of the attributes in the available
choice options (Gentner & Markman, 1997). A number of researchers have found that individuals place
a higher weight on an attribute if it is alignable across the choice options, that is, if it is present in mul-
tiple choice options, compared to if it is non-alignable or unique across the choice options (Markman &
Medin, 1995; Nowlis & Simonson, 1997). This can lead to choice reversals across choice sets and other
related choice set effects (Kivetz & Simonson, 2000; see also Bhatia, 2013 for a review).

Alignability has been shown to strongly affect the probability of choice deferral (Gourville &
Soman, 2005). Particularly, choice deferral is more likely in choice sets with multiple non-alignable
attributes compared to choice sets with alignable attributes. To illustrate this, consider options
x14 = (7, 7, 3, 0), x15 = (7, 3, 7, 0), and x16 = (0, 3, 7, 7). These are variants of the options in Effect 4,
except for the fact that all of the four attributes are desirable. Now, in this setting, attribute 1 is align-
able across options x14 and x15 but not across options x14 and x16 (besides this difference, these choice
pairs are identical in terms of both their absolute desirability and relative desirability). The alignability
effect thus states that deferral should be more likely in the choice between x14 and x16 compared to
the choice between x14 and x15, that is, Pr(D|x14, x16, D) > Pr(D|x14, x15, D). Chernev (2003, 2005)
and Greifeneder, Scheibehenne, and Kleber (2010) document additional evidence supporting this
effect. The options discussed here are summarized in Table 1.

2.6. Effect 6: extreme options

The effects discussed thus far illustrate how the probability of deferral is affected by the composition
of the choice set. Now we will consider how allowing for the possibility of deferral can alter the choice
probabilities of the existing options in the choice set. This has been empirically examined by Dhar and
Simonson (2003) who found that allowing for deferral disproportionally reduces the choice probability
of an all-average choice option, with moderate amounts of all attributes, compared to an extreme
option, with large amounts of only one attribute.When choices are represented as in Fig. 1, the extreme
options effect implies that the probability of choosing the all-average option x6 = (5, 5) over the
extreme option x7 = (10, 0) is lower when decision makers are given the option to defer choice, relative
to when deferral is not a possibility. If we write the relative choice probability of choosing xi over xi0 in a
certain choice set C as Rel(xi, xi0 |C) = [Pr(xi |C) � Pr(xi0 |C)]/[Pr(xi |C) + Pr(xi0 |C)], then this effect implies
that Rel(x6, x7 |x6, x7) > Rel(x6, x7 |x6, x7, D).

2.7. Effect 7: asymmetric dominance

Another consequence of allowing deferral relates to the asymmetric dominance effect. This is the
finding that the relative choice probability of an option increases with the introduction of a novel
option (a decoy), that it, but not its competitor, dominates (Huber et al., 1982; Wedell & Pettibone,
1996). Again note that in Fig. 1, x3 = (6.5, 2.5) is dominated by x1 = (7, 3) but not by x2 = (3, 7). Using
the above notation, this effect implies that Rel(x1, x2 |x1, x2, x3) > Rel(x1, x2 |x1, x2), that is x1 should be
more likely to be chosen over x2 when x3 is part of the choice set.

The asymmetric dominance effect is typically studied without the possibility of deferral. Dhar and
Simonson (2003) have however run experiments in which decision makers are presented with the
standard asymmetric dominance effect options but are also given the possibility to defer choice. In
these settings Dhar and Simonson find that free choice increases the asymmetric dominance effect,
that is Rel(x1, x2 |x1, x2, x3, D) � Rel(x1, x2 |x1, x2, D) > Rel(x1, x2 |x1, x2, x3) � Rel(x1, x2 |x1, x2).

2.8. Effect 8: compromise

The final consequence of allowing deferral relates to the compromise effect. This is the finding that
the relative choice probability of an option increases with the addition of a decoy that makes the
option appear as a compromise (Simonson, 1989; Simonson & Tversky, 1992). In Fig. 1, x7 = (10, 0)
has more of attribute 1 and less of attribute 2 than both x1 = (7, 3) and x2 = (3, 7). Due to this, x1
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can be seen as being a compromise between x2 and x7. In this setting the compromise effect predicts
that Rel(x1, x2 |x1, x2, x7) > Rel(x1, x2 |x1, x2), that is x1 should be more likely to be chosen over x2 when
x7 is part of the choice set.

As with the asymmetric dominance effect, Dhar and Simonson (2003) have run experiments in
which decision makers are presented with the standard compromise effect options but are
also allowed the possibility to defer choice. In contrast to the asymmetric dominance effect, Dhar
and Simonson find that free choice reduces the compromise effect, that is Rel(x1, x2 |x1, x2, x7) �
Rel(x1, x2 |x1, x2) > Rel(x1, x2 |x1, x2, x7, D) � Rel(x1, x2 |x1, x2, D).

2.9. Choice overload

There is one effect closely related to the above, that we will not directly consider in this paper. This
is the choice overload effect, which states that decision makers are less likely to make a choice when
they are offered a large choice set compared to a moderate or small choice set (Iyengar & Lepper,
2000). Scheibehenne et al. (2010) have argued that this effect does not emerge on aggregate, whereas
Chernev et al. (2015) have claimed that although there may not be a main effect of the size of the
choice set on choice deferral, adding options to the choice set can nonetheless increase the probability
of deferral, when these options alter the dominance relations, mean desirability, relative desirability,
and attribute commonality and alignability of the choice set. As Chernev et al.’s argument in support of
the choice overload effect suggests that the effect is merely a combination of Effects 1–5, we will not
be considering choice overload separately in this paper.
3. A model of choice deferral effects

The above effects illustrate a systematic relationship between the decision to defer choice, and the
composition of the choice set. With our movie choice example, these effects suggest that choices
between the movies would be less likely to be deferred if the decision maker was deciding between
an action movie and an inferior but similar movie (such as a second, less enjoyable action movie),
instead of the initial action movie and documentary. Likewise choice should be less likely to be
deferred if the two available movies were both highly desirable, or if, one movie was seen as being
much more desirable than the other. Finally, we could alter the incidence of choice deferral by varying
the attribute overlap between the movies.

Likewise the presence or absence of deferral can affect underlying choice probabilities between the
available options. If the decision maker was forced to make a choice between the available movies, we
would observe a higher choice probability of choosing an all-average movie compared to an extreme
movie. Similarly, the incidence of the asymmetric dominance effect would reduce, but the incidence of
the compromise effect would increase, compared to a free choice setting in which deferral was
allowed.

3.1. Modeling choice deferral

The above effects show that deferral related behavior is sensitive to both the values and the attri-
bute compositions of the available options. Nearly all cognitive models of multi-attribute choice are
able to make predictions regarding these variables, suggesting that formally modeling free choice does
not require a drastic move away from existing frameworks.

Indeed there have been prior attempts to integrate a deferral mechanism into decision field theory
(DFT) (Busemeyer & Townsend, 1993; Roe et al., 2001). DFT is a dynamic model of preferential choice,
which assumes that attribute values are sampled sequentially and stochastically, and accumulated
into preferences over the time course of the decision process. Sequential sampling models are com-
monly used to study low-level decisions, such as perceptual and lexical decisions (Link & Heath,
1975; Nosofsky & Palmeri, 1997; Ratcliff, 1978; Ratcliff, Gomez, & McKoon, 2004; Usher &
McClelland, 2001). They are both biologically plausible and have insightful statistical interpretations
(Bogacz, Brown, Moehlis, Holmes, & Cohen, 2006; Gold & Shadlen, 2007). Additionally the models are
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able to make rigorous quantitative predictions regarding not only choice probabilities but also deci-
sion times, confidence, and related decision outcomes (Bhatia, 2013, 2014; Busemeyer & Townsend,
1993; Diederich, 1997; Johnson & Busemeyer, 2005; Krajbich, Armel, & Rangel, 2010; Pleskac &
Busemeyer, 2010; Roe et al., 2001; Trueblood et al., 2014; Tsetsos, Chater, & Usher, 2012; Usher &
McClelland, 2004). By using a sequential sampling mechanism, DFT presents a theoretically desirable
approach to modeling preferential choice.

Jessup et al. (2009) have assumed that choice is deferred within a DFT model, if the decision is not
made by a certain time. They have shown that this time limit-based extension to DFT can explain the
choice overload effect; that is, it can, in certain settings, lead to increased choice deferral in the pres-
ence of multiple choice options.

Busemeyer et al. (2006) also present an alternate DFT-based model of deferral. This model assumes
that the possibility of choice deferral is processed as just another choice option, and that choice is
deferred when this option is chosen. Busemeyer et al. (2006) show that that this assumption can
explain the increase in the asymmetric dominance effect and decrease in the compromise effect, in
the presence of deferral (Effects 7 and 8).

White et al. (2015) have also presented a formal model of deferral. Their model is not based in the
sequential sampling and accumulation framework, but instead assumes that decision makers evaluate
choice options in two stages, with one stage involving evaluations of absolute desirability and the
other stage involving evaluations of relative desirability. Choice can be deferred if the absolute desir-
abilities of the options or the relative desirabilities of the options fail to reach a threshold. With these
assumptions, White et al.’s model is able to explain Effects 2 and 3.

None of these models explain all of the effects outlined above. The DFT-based models of Jessup
et al. (2009) and Busemeyer et al. (2006), for example, do not attempt to explain deferral’s relationship
with dominance, absolute option desirability, relative option desirability, attribute overlap, or the
effect of choice deferral on the choice probability of extreme options (Effects 1–6). Additionally,
Jessup et al.’s (2009) model does not attempt to explain deferral’s relationship with the asymmetric
dominance and compromise effects (Effects 7 and 8). Similarly White et al.’s (2015) two-stage model
does not attempt to explain deferral’s relationship with dominance, attribute overlap, or the effect of
choice deferral on various choice probabilities (Effects 1 and 4–8).

That said, the models outlined above provide many valuable insights regarding the ways in which
deferral could be formalized. Their inability to account for all the effects discussed in this paper may
stem not from their specific assumptions regarding the mechanisms underlying deferral, but rather
the back-end models onto which these mechanisms are attached. Thus, for example, Jessup et al.’s
(2009) time limit mechanism could in fact be a good way of formalizing choice deferral within a
sequential sampling framework, and could potentially explain Effects 1–8 when implemented within
a different sequential sampling model.

3.2. Modeling choice set dependence

We first attempt to account for the above eight effects using Jessup et al.’s (2009) time limit mech-
anism. In order to test whether this mechanism can be used to explain Effects 1–8, which pertain to a
relationship between deferral and the composition of the choice set, we implement this time limit
within the associative accumulation model (AAM) (Bhatia, 2013). Like DFT, AAM is a sequential sam-
pling and accumulation theory of preference which assumes the values of attributes are stochastically
and dynamically aggregated into preferences. AAM differs from existing accumulation models of pref-
erential choice in suggesting that the representation and retrieval of information about the available
options plays a key role in the decision. Particularly, decision makers are assumed to use a simple two-
layer neural network to store the relationships between the options and their attributes. As in related
models of semantic representation and object representation, the connections between options and
attributes capture the associations between these options and attributes. These associations are
assumed to be equal to the amount of an attribute that each option has, so that options that have high
amounts of a certain attribute also have stronger associative connections with the attribute. Activating
an option by including it in the choice set, activates its component attributes, and subsequently affects
the probability with which these attributes are attended to and aggregated into preferences. This is in



120 S. Bhatia, T.L. Mullett / Cognitive Psychology 86 (2016) 112–151
contrast to models such as multi-alternative decision field theory, multi-attribute leaky competitive
accumulation, and multi-alternative linear ballistic accumulation, which assume that attribute activa-
tion and sampling is independent of the composition of the choice set (Roe et al., 2001; Trueblood
et al., 2014; Usher & McClelland, 2004).

As an example of AAM’s attribute activation property, consider again our choice between the
movies. AAM predicts that the probability of thinking of an attribute is increased in the presence of
choice options that contain large amounts of that attribute. Thus decision makers who have to choose
between an action movie and a documentary should be more likely to attend to the documentary’s key
attributes (e.g. informativeness) compared to decision makers who are not given the documentary as
an available option. Likewise adding a new type of movie, say a horror movie, would lead to increased
attention towards horror related attributes, relative to the initial setting with just the action movie
and documentary.

This attribute activation property can be seen as a type of weighting-bias. That said, while this bias
acts to increase the influence of attributes that are present in large quantities in one alternative or are
present in multiple alternatives, it does not necessarily lead to a change in judgments of subjective
attribute importance (e.g. those studied in Wedell & Pettibone, 1996). It may very well be the case that
explicit judgments of attribute importance diverge from those that would be predicted by AAM, as
suggested in Wedell and Pettibone’s work.

Additionally, the weighting-type biases proposed by AAM diverge from other types of weighting
biases which are associated with changes to the choice set, such as manipulations of the range of
an attribute (e.g. Ariely & Wallsten, 1995; Huber et al., 1982). Thus it is possible to increase the atten-
tion to an attribute in the AAM model while keeping range constant. This is why, for example, fre-
quency decoys can bias preferences (Wedell, 1991): AAM is able to predict this (Bhatia, 2013), but
a model relying solely on range-weighting cannot. A similar point holds with phantom dominating
decoys (e.g. Pettibone & Wedell, 2000) and symmetrically dominated range decoys (Wedell, 1991).
Finally, evidence for the types of attentional biases predicted by AAM has been documented by
Bhatia (2014) and is also observed in experiments on reference dependence (see Bhatia, 2013 for
details).

While attending to attributes associated with the available options seems to be efficient, it can lead
to certain types of inconsistency. Particularly, adding or removing options from the available choice
set can alter attribute sampling probabilities and subsequently reverse choice. This dependence
between choice, and the options that are available in the decision, allows AAM to explain a large range
of findings regarding choice set dependence, such as the asymmetric dominance and compromise
effects, alignability and conflict effects, less is more effects, and reference point effects (see Bhatia,
2013 for more details). In this sense AAM could serve as a convenient back-end process with which
the properties of the deferral time limit can be tested.
3.3. A combined approach

In the first half of this paper, we will implement the insights of Jessup et al. (2009) using AAM as a
back-end model, and assume that choice is deferred if the accumulators do not cross the decision
threshold by a certain time limit. Recall that we can represent an available option as a vector of M
attributes, xi = (xi1, xi2, . . . ,xiM). AAM assumes that the associative connection between a choice option,
i, and an attribute, j, is simply equal to the amount of the attribute in the choice option, xij. The prob-
ability of sampling an attribute is given by the relative strength of association of the attribute with the
choice set. For an attribute j, in a choice set with N available options, this sampling probability can be
written as:
wj ¼
PN

i¼1½xij� þ a0PM
k¼1

PN
i¼1½xik� þ a0

� �
Here a0 is a constant that determines the strength of the associative bias. As a0 increases, the associa-
tive bias in AAM is reduced. At a0 =1, each attribute is equally likely to be sampled, and decisions are
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choice set-independent. Overall, the above equation implies that an attribute is more likely to be
attended to if it is strongly associated with multiple options in the choice set.

Once an attribute is sampled, AAM assumes that its value in every available option is calculated
and added to the accumulating preferences. The value of attribute j in option i can be written as Vj(-
xij), where Vj is a positive and increasing function if the attribute is desirable and a negative and
decreasing function if the attribute is undesirable. Preferences are also subject to gradual leakage, cap-
tured by parameter d, lateral inhibition, captured by parameter l, and a zero mean noise with standard
deviation r, captured by parameter e. If attribute j is sampled at time t, then the preference for option i
can be written as:
Fig. 2.
chosen
deferre
would
both if
PiðtÞ ¼ d � Piðt � 1Þ � l �
X
k–i

Pkðt � 1Þ þ VjðxijÞ þ eiðt � 1Þ
Finally, an upper threshold Q determines both the option that is chosen, and the time at which the
decision is made. If an option xi crosses Q at time t then xi is chosen and t is the decision time. In forced
choices where deferral is not an option, the decision terminates only after some option has crossed Q.

What happens in free choices, where deferral is allowed? As in Jessup et al. (2009) we assume that
choice is deferred if a time limit T is crossed without the decision having been made at an earlier time
period. Hence in choices with the possibility of deferral, some option is chosen if it crosses Q before T,
and choice is deferred if this event does not happen before T. An illustration of a typical choice is pre-
sented in Fig. 2.

It is important to note that the model presented here involves some simplifications. Firstly we
assume that the activation function for Pi(t) is linear, and that activation can fall below zero. A non-
linear activation function with a lower bound at zero is more biologically plausible. However as we
will only be considering desirable options with minimal levels of lateral inhibition, a lower bound
on our preference activation will not be necessary. All of the results discussed in this paper emerge
with the piecewise linear activation function used in Usher and McClelland (2001, 2004).

Secondly, we assume that choice is made using only a single (upper) threshold. Some prior work
has assumed the possibility of a lower threshold, which is useful for capturing choice option elimina-
tion (e.g. Roe et al., 2001). Again, however, we will only be considering desirable options with minimal
levels of lateral inhibition, and so a lower rejection threshold will not be necessary. All of the results
discussed in this paper emerge with the negative rejection threshold used in Roe et al. (2001).

Finally, we have assumed that the deferral time limit is deterministic. This is a tremendous
simplification. If this was actually the case then we would observe a censored time distribution in
the presence of deferral, which is unrealistic. Here we have a single fixed T only for expositional con-
venience. In later sections, which examine decision time predictions in more detail, we will assume
the possibility of a variable T.
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An illustration of the deferral time limit in a choice involving two options. The first option to cross the threshold Q is
. If deferral is allowed, and if neither of the two accumulators cross Q before the deferral time limit T, then choice is
d. In the first panel choice would be deferred if deferral was allowed, and the option corresponding to the dashed line
be chosen if deferral was not allowed. In the second panel the option corresponding to the solid line would be chosen
deferral was allowed and if it wasn’t.
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3.4. Properties of the deferral time limit

According to the proposed approach, choice is deferred if the accumulators for the available options
do not cross the decision threshold before the time limit. In this sense, the time limit T is a vertical
boundary corresponding to deferral (just like the decision threshold Q is a horizontal boundary corre-
sponding to choice). T is most likely to be crossed if the rate of accumulation towards Q is particularly
slow. This implies that the probability of deferring choice can be changed by altering the speed at
which preferences are accumulated, with faster accumulation leading to reduced deferral. AAM pre-
dicts that attribute attention, and subsequently the rate of accumulation, can change if existing
options are modified, suggesting that a time limit mechanism for deferral, using AAM as a back-end
model, may be able to account for dependence of deferral on the dominance relations, absolute and
relative desirability, and attribute overlap in the choice set (Effects 1–5).

Another implication of the proposed deferral mechanism is that it introduces a type of time depen-
dence to the choice task. By stopping the choice task at time T, choice deferral disproportionately
detracts from the choice probabilities of options that become desirable only later on in the decision.
If deferral was not a possibility, these options would increase in their relative preference strength after
T, and eventually be chosen. Since deferral is allowed, this cannot happen, and the decision often ter-
minates in deferral instead of the selection of these options. This implies that allowing for the possi-
bility of choice deferral can disproportionally alter the choice probabilities of available options, if the
preferences for these options increase at different rates over time. Indeed allowing for the possibility
of choice deferral can even reverse choice probabilities of options if modal threshold crossing proba-
bilities before T and after T vary. The dynamics of AAM are sophisticated enough to generate these
types of time dependencies, suggesting that a time limit mechanism for deferral, implemented with
AAM, may be able to account for findings regarding the effect of deferral on underlying choice prob-
abilities (Effects 6–8).

3.5. Other sequential sampling models

The assumptions of sequential sampling of attributes, and decay and inhibition in preferences, out-
lined above, are not unique to the associative accumulation model. Rather they are derived from exist-
ing dynamic models of decision making, notably the leaky competitive accumulator (LCA) (Usher &
McClelland, 2001) and multi-alternative decision field theory (MDFT) (Roe et al., 2001). The novelty
of AAM is in its assumption of associative attribute sampling, according to which the choice set can
influence which attributes are accumulated during the decision process. This mechanism is controlled
by the parameter a0, and can be turned off by setting a0 =1. In this case the above setting would
reduce to a leaky competitive accumulator which sequentially samples and accumulates attribute val-
ues with leakage and inhibition, but one whose attribute sampling probabilities do not vary as a func-
tion of the choice set. Note that Usher and McClelland (2004) present a multi-attribute extension of
their LCA model, which features leakage, but differs in terms of other properties, relative to the pro-
posed AAM model. In the remainder of the paper our reference to the LCA model will pertain to the
2001 version of the model. Any references to the 2004 multi-attribute extension will be explicitly
labeled as such.

It is important to note that changing the composition of the choice set or the possibility of deferral
can influence choices in the above model, even if the associative mechanism is inactive. For example,
the changes in accumulation caused by modifying the desirability of an alternative in the choice set,
do not only emerge because these changes can alter attribute sampling probabilities they also emerge
because this type of change affects values Vj(xij) which are aggregated into preferences. In this light,
we will be examining which of the deferral effects we wish to describe require the full AAM model,
and which of them can also be obtained with the above AAM specification, but with very large values
of a0, in which the associative component of the model is absent and model is reduced to a leaky com-
petitive accumulator. We will also consider setting l = 0, thereby further simplifying the LCA model to
have just leaky racing accumulators without inhibition (leakage itself does not alter our predictions
and thus for simplicity we will avoid further simplifying this model into a race accumulator without
leakage).
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In addition to AAM there are also a number of additional approaches that build on the multiat-
tribute leaky competitive accumulator framework to attempt to explain findings such as asymmetric
dominance and compromise effects. These include the MDFT model (Roe et al., 2001) which assumes
distant-dependent inhibition and the multi-attribute leaky competitive accumulator (MALCA) (Usher
& McClelland, 2004) which allows for loss aversion-based inter-attribute comparisons alongside leaky
competitive accumulation. A more recent sequential model that does not assume sequential sampling
of attributes or decay and leakage in preferences is the multi-attribute linear ballistic accumulator
(Trueblood et al., 2014). All three of these models could be modified to include a deferral time limit,
as we have done with the AAMmodel above. For parsimony this paper will not explicitly test the prop-
erties of these deferral-based extensions of MDFT, MALCA, or MLBA, but these properties, and their
ability to explain existing deferral effects, will be discussed in detail in later sections.
4. Explaining deferral effects

In this section, we will show how the time dynamics of preference accumulation in the model out-
lined above relate to the causes and consequences of choice deferral. Simulations will use model
parameters specified in Bhatia (2013): we will set d = 0.8, r = 0.05, Pi(0) = 0 for all i, Vj(xij) = xij

0.5 for
all j. We will vary a0, so as to examine the dependence of our predictions on the associative mecha-
nisms proposed by AAM, with values of a0 = 0 corresponding to settings where this mechanism is
strongly active, and a0 =1 corresponding to settings where this mechanism is absent and the model
mimics a leaky competitive accumulator. a0 = 10 is the parameter value used in Bhatia (2013). We will
also assume that l = 0.01, while occasionally limiting l = 0 in conjunction with a0 =1, in order to test
the predictions of a further simplified version of the above model in in which attribute sampling with-
out associative biases aggregates preferences in (leaky) racing accumulators. Lastly we will assume
that the vertical and horizontal thresholds T and Q are equidistant from the origin and that both
are equal to 10, which is the total attribute value of the core choices that we are considering (see
Fig. 1), though we will occasionally vary these parameters to examine the robustness of our effects.
Each simulation will be repeated 10,000 times, and displayed responses will be averaged over these
trials. Choice options used in Bhatia (2013) will be the basis of these simulations. These options are
displayed in Fig. 1.

Note that our use of Bhatia’s (2013) parameters and choice options indicates that all of the results
discussed in the following sections are fully compatible with those discussed in Bhatia (2013), and
that the deferral-based extension of AAM can provide a simultaneous account of the results from both
papers using a single set of parameter values (the very weak amount of lateral inhibition assumed
here, which is absent in Bhatia (2013), does not alter Bhatia’s (2013) findings). Additionally, by
restricting ourselves to previously used options and parameter values, and setting T = Q = x11 + x12 = -
x21 + x22 = 10, we have minimized the amount of theoretical flexibility involved in applying our model
to new effects. Our ability to explain these effects (shown in the coming sections) despite our restric-
tive parameter assumptions suggests that our approach’s predictions regarding deferral are fairly
robust.

That said, some of the predictions of the model can be improved by tweaking these options and
parameters. For example, with the above setup, our model predicts relatively high deferral rates. This
could be remedied by having a slightly higher value of T or d, or having slightly lower values of Q and
xij. As this part of the paper aims primarily to provide a qualitative account of choice deferral effects,
we will ignore these quantitative considerations, and limit ourselves to the options and parameters
specified above.
4.1. Effect 1: dominance

The deferral time limit, with AAM as a back-end process, predicts a reduced probability of choice
deferral with dominated options. Recall that AAM assumes that attribute attention is proportional to
the association of the attributes with the available options, so that attributes that are present in mul-
tiple options are also associated with multiple options, and thus receive a higher attentional weight. If
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one option dominates another, they typically share the same primary attribute, and this attribute is
highly likely to be sampled. For example, in the choice set {x1, x3} in Fig. 1, attribute 1 is highly present
in both options, and is thus the attribute decision makers most frequently attend to. This means that
the preference for option x1—the most desirable option, which is also the option that is the strongest
on attribute 1—increases and crosses a threshold quickly, and that choice is subsequently unlikely to
be deferred.

When a dominated option is replaced with an equally desirable non-dominated option, there is a
dispersion in the sampling probabilities of the underlying attributes, as attributes associated with the
novel, non-dominated option are nowmore likely to be sampled. Thus, in our example, if x3 is replaced
with x4, decision makers are relatively more likely to sample attribute 2. This reduces the rate of accu-
mulation for all choice options (including the most desirable option, x1) increasing the probability that
thresholds are not crossed by the deferral time limit.

Consider, for example, the choice options presented in Fig. 1: x1 = (7, 3), x3 = (6.5, 2.5) and x4 = (2.5,
6.5). When we implement our model with the parameters listed in the previous section, we find that
the sampling probability of attribute 1 in the set {x1, x3} is 0.61, whereas the sampling probability of
attribute 1 in the set {x1, x4} is 0.50. Subsequently the expected increase in the preference for x1, in
each time period, in the set {x1, x3}, is 2.28, whereas the equivalent increase in preference in the set
{x1, x4} is 2.18. As a result of this x1 is less likely to cross the threshold before the time limit in the
set {x1, x4} compared to the set {x1, x3}, and we obtain Pr(D|x1, x4, D) = 0.92 > Pr(D|x1, x3, D) = 0.82.

This dependence of attribute sampling on the composition of the choice set is a function of the AAM
parameter a0, and cannot be predicted by a restricted LCA type model in which the associative mech-
anisms of AAM are inactive. Particularly, for high values of a0, attribute attention is independent of the
choice set, and the above dominance biases disappear. This is shown in Fig. 3, which plots the differ-
ence in the deferral probabilities in the choice set {x1, x4} compared to the choice set {x1, x3}, that is, Pr
(D|x1, x4, D) � Pr(D|x1, x3, D). Positive values in this figure correspond to the emergence of the dom-
inance effect described above. As can be seen in Fig. 3, this effect is likely to emerge when a0 is small.
This effect disappears as a0 increases and the strength of the associative mechanisms in AAM weaken.
Fig. 3 also plots the difference in choice probabilities of x1 in the choice set {x1, x4} compared to the
choice set {x1, x3}, that is, Pr(x1 |x1, x4, D) � Pr(x1 |x1, x3, D). It shows that x1 is more likely to be
a0
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Fig. 3. The effect of the associative bias parameter, a0, on the strength of the dominance effect. The solid line represents the
difference in the deferral probability in the set {x1, x4} compared to the set {x1, x3}, whereas the dashed line represents the
difference in the choice probability of x1 in the set {x1, x4} compared to the set {x1, x3}.
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selected if it dominates its competitor when a0 is small, compared to if it is large. This is consistent
with the explanation for the asymmetric dominance effect in Bhatia (2013) (see also Effect 7).

Additionally note that the effect described here is not sensitive to T = Q = 10, and can emerge with
different values for these parameters. Indeed, setting T = 12 can in fact lead to more reasonable defer-
ral probabilities, that more closely match those obtained in Tversky and Shafir (1992). Particularly,
with T = 12 and Q = 10, we obtain Pr(D|x1, x4, D) = 0.56 > Pr(D|x1, x3, D) = 0.45.

Finally, the overall effect of different dominated vs. non-dominated options on deferral is illus-
trated in Fig. 4. Here we fix one of the options as x1 = (7, 3). The shade of each point (a, b) in this figure
represents the deferral probability generated by the choice set {x1, (a, b)}, using the parameter values
outlined above. Lighter shades indicate a higher deferral probability. As can be clearly seen in the fig-
ure, keeping a + b fixed, the deferral probability is lower when (a, b) is dominated by x1 compared to
when it isn’t. Note that Fig. 4 also displays a number of additional interesting patterns. For example,
the dominance effect in deferral seems to share some of the properties of the asymmetric dominance
effect in choice. Particularly, frequency decoys that are dominated by an option on its primary dimen-
sion lead to higher deferral than range decoys that are dominated by an option on its secondary
dimension. This is similar to the effect of range vs. frequency decoys documented by Huber et al.
(1982) and predicted by Bhatia (2013) and related models. Additionally the probability of deferral
seems to be decreasing both in the extremity and in the absolute desirability of (a, b), so that the high-
est rates of deferral are observed for non-dominated placements of (a, b) which are relatively undesir-
able and have moderate amounts of the two attributes. Some of these patterns will be discussed in
detail in subsequent sections.

4.2. Effect 2: absolute desirability

Fig. 4 indicates that the deferral time limit may be able to capture more than just the dominance
effect. For example, the fact that deferral probabilities increase as the value of x4 decreases suggests
that our approach can also account for the effect of the absolute desirability of the available options
on the probability of choice deferral. Some simple analysis shows that this is indeed the case. Even
though the proposed model features lateral inhibition, accumulation in our model is not completely
relativistic: higher rates of accumulation and subsequently higher preferences can be obtained by
increasing the absolute desirability of available options while keeping their relative desirability con-
a 

b 

Fig. 4. The effect of varying placements of a choice option on deferral probability. The shade of each point (a, b) in this figure
represents the deferral probability generated by the choice set {x1, (a, b)}.
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stant. Due to the deferral-based time limit, deferral is less likely to occur when accumulation rates are
high, and is thus less likely to occur when the choice set contains highly desirable items. Indeed using
the choices outlined in Fig. 1, we find that choice is deferred more frequently in the set {x3, x4}, com-
pared to the set {x1, x2}, with Pr(D|x3, x4, D) = 0.97 > Pr(D|x1, x2, D) = 0.85. Additionally, as expected,
we obtain Pr(x3 |x3, x4, D) = Pr(x4 |x3, x4, D) and Pr(x1 |x1, x2, D) = Pr(x2 |x1, x2, D).

As mentioned above, Fig. 4 does display this property. However, as this figure confounds both dom-
inance and relative desirability (discussed below), it is not sufficient by itself to conclusively establish
the effect of absolute desirability on choice. Fig. 5 remedies this problem. It displays the probability of
deferral in the choice sets {k1 � (7, 3), k2 � (3, 7)}, where k1 and k2 are varied in increments of 0.01 from
0.5 to 1.5. Each point in this figure captures the probability of deferring choice for corresponding coor-
dinate values of (k1, k2). Each ray out of the origin can be seen as representing a collection of choice
sets featuring the same relative desirability of the options, that is featuring a constant ratio k1/k2.
Points further away from the origin on each ray have a higher average desirability, keeping this ratio
fixed. Thus, for example, the ray leaving the origin at a 45-deg angle represents choice sets with
equally desirable options (i.e. k1 = k2). Choice sets further up on this ray have higher values of k1
and k2, and thus higher absolute desirability of the options.

As can be seen in Fig. 5, moving up a ray always leads to darker shades in the figure, showing that
choice sets with higher desirability, keeping relative desirability fixed, are associated with lower rates
of choice deferral. Thus the deferral probability in {(10.5, 4.5), (4.5, 10.5)} is 0%, the deferral probability
in {(7, 3), (3, 7)} = {x1, x2} is 85%, and the deferral probability in {(3.5, 1.5), (1.5, 3.5)} is 100%.

This mechanism, unlike the dominance effect shown above, does not need an associative attention
mechanism, and can be generated by the more restrictive LCA model which we obtain by setting
a0 =1. For example, in such a model we obtain choice probabilities Pr(D|x3, x4, D) = 0.91 > Pr(D|x1,
x2, D) = 0.72, which are consistent with the absolute desirability effect. Also note that lateral inhibition
has a detrimental influence on this effect, and that this effect is slightly stronger when inhibition is
completely absent, and the model is simplified into a leaky race model. Particularly, with both
a0 =1 and l = 0, we have Pr(D|x3, x4, D) = 0.92 > Pr(D|x1, x2, D) = 0.71. Lastly, the absolute desirability
effect is not sensitive to T and Q being equal, and can emerge with different values for these param-
eters. For example, with T = 12 and Q = 10, but a0 = 10 and l = 0.01, we obtain Pr(D|x3, x4, D) = 0.75 > Pr
(D|x1, x2, D) = 0.36. Again, these seem like more reasonable deferral probabilities compared to if
T = 10.
k1

k 2

Fig. 5. The probability of deferral in the choice sets {k1 � (7, 3), k2 � (3, 7)}, where k1 and k2 are varied in increments of 0.01 from
0.5 to 1.5. Each point in this figure captures the probability of deferring choice for corresponding coordinate values of (k1, k2).
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4.3. Effect 3: relative desirability

The proposed model is also able to predict the emergence of the relative desirability effect. Partic-
ularly, decisions are more likely to be deferred if the available options differ greatly in their desirabil-
ity compared to if they do not, keeping absolute desirability constant. This is due to the fact that the
model features lateral inhibition, which means that accumulation is partially relativistic. Although
inhibition does reduce the absolute desirability effect described above, it also leads to preferences
in choice sets with equally desirable options inhibiting each other, slowing down each other’s accu-
mulation rate and increasing the probability that the deferral time limit is reached without the deci-
sion threshold having been crossed. We can illustrate this insight using the choices in Fig. 1. With a
simple series of simulations, we find that choice is deferred more frequently in the choice set {x1,
x2}, in which the two options are equally desirable, compared to the choice set {x4, x5} in which the
two options have the same average desirability but differ in their relative desirability. Particularly,
we have Pr(D|x1, x2, D) = 0.85 > Pr(D|x4, x5, D) = 0.77. Additionally, as expected, we have Pr(x1 |x1,
x2, D) = Pr(x2 |x1, x2, D), but Pr(x5 |x4, x5, D) > Pr(x4 |x4, x5, D).

Fig. 6 transforms the data used in Fig. 5 to show this more rigorously. Recall that Fig. 5 displayed
the probability of deferral in the choice set {k1 � (7, 3), k2 � (3, 7)}, as a function of k1 and k2. Fig. 6 pre-
sents the same data, but as a function of the mean desirability, [k1 � (7 + 3) + k2 � (3 + 7)]/2, and abso-
lute difference in the difference in desirability of the options, |k1 � (7 + 3) � k2 � (3 + 7)|. As can be seen
in this figure, increasing the relative desirability in the choice set, keeping the mean desirability of the
options constant, always reduces the probability of deferral. Thus, for example, in settings with a mean
option desirability of 10, choice is deferred 86% of the time when the difference in desirability is 0, and
deferred 10% of the time when the difference in desirability is 10.

Note that in addition to inhibition, there is one other force that is driving the above results. The
proposed model is sensitive to relative desirability, partially due to the fact that the relative desirabil-
ity of the options in a choice set is closely associated with the maximum desirability of an option in the
choice set, when absolute desirability is held constant. Choice sets that have large differences in option
desirability also have one option which is highly desirable (and another which is much less desirable).
In contrast, controlling for average option desirability, choice sets that have small differences in option
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Fig. 6. Transformed data from Fig. 5, to show the probability of deferral as a function of the mean desirability, [k1 � (7 + 3)
+ k2 � (3 + 7)]/2, and absolute difference in the difference in desirability of the options, |k1 � (7 + 3) � k2 � (3 + 7)|.
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desirability typically feature two moderately desirable options. More formally, if the total values of
four options are written as positive numbers a, b, c, and d, with a + b = c + d and |a � b| > |c � d|, then
it must be the case that max{a, b} > max{c, d}. Now, in order for choice not to be deferred it is sufficient
that a single option crosses the threshold Q before the time limit. In the proposed model, it is more
likely that Q is crossed in a choice set where one option is highly desirable and the other is weakly
desirable, compared to a choice set in which both options are moderately desirable. Again, as deferral
probability is related to the probability with which Q is crossed, this implies that deferral is less likely
in choice sets with large desirability differences.

Would we obtain the effect of relative desirability even if we keep the maximum desirability of an
option fixed, instead allowing the absolute desirability of the choice set to vary? Consider, for exam-
ple, a choice between x1 and k � x2. Here if k = 1, then we obtain our standard choice set {x1, x2}, with Pr
(D|x1, x2, D) = 0.85. Now if we make k smaller, then the relative desirability between x1 and x2
increases but the average desirability of the two options decreases. Dhar (1997) has found that choice
deferral can increase in these settings, despite the fact that the absolute desirability effect predicts
otherwise. Our model can generate this behavior due to inhibition. For example, if k = 0.1, then for
the parameters we have outlined above, we obtain Pr(D|x1, k � x2, D) = 0.81 < Pr(D|x1, x2, D) = 0.85,
demonstrating this effect. More generally, however, lower values of l or higher values of k can reduce
the strength of the effect. Indeed, the effect completely disappears if l = 0, with Pr(D|x1, k � x2, D)
= 0.77 > Pr(D|x1, x2, D) = 0.71, implying that inhibition is necessary to explain the emergence of the
relative desirability effect.

Finally, note that this mechanism also does not need an associative attention mechanism, and can
be generated by the more restrictive non-associative LCA model which we obtain by setting a0 =1
(but keeping l = 0.01). Here again we have Pr(D|x1, k � x2, D) = 0.81 < Pr(D|x1, x2, D) = 0.85. In a similar
manner, varying T to have T = 12 (with Q = 10, as well as a0 = 10 and l = 0.01) gives us Pr(D|x1, k � x2, D)
= 0.38 < Pr(D|x1, x2, D) = 0.45.
4.4. Effect 4: common and unique attributes

Sequential attribute sampling models act as if they overweigh large attribute differences by
increasing choice probabilities of options that are especially strong on these differences (though once
again, these models don’t feature any explicit assumptions about weighting biases). Because of this,
unique attributes typically play a more important role in choice, relative to common attributes (again,
see Bhatia, 2013; Roe et al., 2001). If these unique attributes are bad, then preferences will accumulate
at a slower rate, compared to if these unique attributes are good. Though this mechanism is typically
used to explain how varying common vs. unique attributes affects violations of stochastic transitivity,
this change to the rate of accumulation can also predict a higher deferral probability in the presence of
unique bad vs. good attributes. Indeed with the options x8 = (7, 7, 3, 0), x9 = (7, 7, 0, 3), x10 = (14, 0, 1.5,
1.5), and x11 = (0, 14, 1.5, 1.5), introduced above (in which attributes 3 and 4 are undesirable), we find
that Pr(D|x8, x9, D) = 0.92 > Pr(D|x10, x11, D) = 0.85. Additionally, as this mechanism still involves the
evaluation of common attributes, changing these common attributes, by using options x12 = (10, 10, 3,
0), and x13 = (10, 10, 0, 3), instead of x8 = (7, 7, 3, 0), x9 = (7, 7, 0, 3), gives us a lower rate of deferral.
Particularly, we find that Pr(D|x8, x9, D) = 0.92 > Pr(D|x12, x13, D) = 0.53. This is not sensitive to the
precise values of T so that setting T = 12 gives us Pr(D|x8, x9, D) = 0.83 > Pr(D|x10, x11, D) = 0.74 > Pr
(D|x12, x13, D) = 0.34. Finally, as expected, we obtain Pr(x8 |x8, x9, D) = Pr(x9 |x8, x9, D) and Pr(x10 |
x10, x11, D) = Pr(x11 |x10, x11, D).

As the key mechanism responsible for this effect involves sequential attribute sampling, it can be
generated by the more restrictive LCA model which we obtain by setting a0 =1. For this parameter
value we obtain Pr(D|x8, x9, D) = 0.90 > Pr(D|x10, x11, D) = 0.85 and Pr(D|x8, x9, D) = 0.90 > Pr(D|x12,
x13, D) = 0.48. We obtain similar patterns in deferral probability even if we further restrict l = 0, with
Pr(D|x8, x9, D) = 0.98 > Pr(D|x10, x11, D) = 0.94 and Pr(D|x8, x9, D) = 0.98 > Pr(D|x12, x13, D) = 0.84,
showing that inhibition is also not necessary for this effect. Ultimately it is possible to model the influ-
ence of common vs. unique attributes in a simple leaky race model that samples attributes sequen-
tially without inhibition or associative attention.
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4.5. Effect 5: alignability

The deferral-based time limit, implemented with AAM, is able to capture the alignability effect in a
manner similar to the dominance effect. As discussed in Bhatia (2013), the associative bias proposed
by the AAM model can explain why decision makers place a higher weight on alignable attributes rel-
ative to non-alignable attributes. Particularly, since attribute activation is an increasing function of the
amount of the attribute in the choice options, alignable attributes, which are present in multiple
options, receive a higher activation, and subsequently a higher weight. This leads to alignable attri-
butes being sampled more frequently, and choice options with alignable attributes accumulating
and crossing the threshold more quickly. Choice sets with a high number of alignable attributes will
thus have faster threshold crossing and a correspondingly low rate of deferral. When choice sets are
modified so that fewer attributes are alignable, there is dispersion in the sampling probabilities of the
underlying attributes. This reduces the rate of accumulation for all choice options, increasing the prob-
ability that thresholds are not crossed by the deferral time limit. It is because of this that there is lower
deferral in the choice between x14 = (7, 7, 3, 0) and x15 = (7, 3, 7, 0), than in the choice between x14 = (7,
7, 3, 0) and x16 = (0, 3, 7, 7), with Pr(D|x14, x16, D) = 0.88 and Pr(D|x14, x15, D) = 0.78. Additionally, as
expected, we obtain Pr(x14 |x14, x15, D) = Pr(x15 |x14, x15, D) and Pr(x14 |x14, x16, D) = Pr(x16 |x14, x16, D).

This dependence of attribute sampling on the composition of the choice set is a function of the
parameter a0. For high values of this parameter, attribute attention is independent of the choice set,
and the above alignability biases disappear. This is shown in Fig. 7, which plots the difference in
the deferral probabilities in the choice set {x14, x16} compared to the choice set {x14, x15}, that is, Pr
(D|x14, x16, D) � Pr(D|x14, x15, D). Positive values in this figure correspond to the emergence of the
alignability effect. As can be seen in Fig. 7, this effect is likely to emerge when a0 is small. This effect
disappears as a0 increases and the strength of the associative mechanisms in AAM weaken, and it can-
not be predicted by a restricted LCA type model in which the associative mechanisms of AAM are com-
pletely inactive.

Finally note that this effect can emerge with different values of T, so that with T = 12 we obtain Pr
(D|x14, x16, D) = 0.72 and Pr(D|x14, x15, D) = 0.53. It is, however, sensitive to the specific attributes on
the alignable dimensions, so that it can be weakened by changing these values while keeping the
alignability of the dimensions constant.
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Fig. 7. The effect of the associative bias parameter, a0, on the strength of the alignability effect. The line plots the difference in
the probability of deferral in the choice set {x14, x16} compared to the choice set {x14, x15}.
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4.6. Effect 6: extreme options

Our approach is able to capture the effect of choice deferral on the choice probabilities of all-
average vs. extreme options due to the stochastic sequential sampling of attributes, which introduces
a time dependence in the accumulation of preference. At earlier time periods, when few attributes
have been sampled, choice is more likely to be influenced by attributes with large magnitudes, and
the bias favoring the extreme option is particularly strong. This happens because samples of an attri-
bute on which an option is particularly extreme can, due to the magnitude of values on this attribute,
lead to a threshold being crossed (this is less likely to happen with random samples of an attribute on
which the option values are moderate). As a result of this, the extreme option is highly likely to be
chosen early on in the decision process. As time progresses preferences asymptote towards a stable
point, which is a simple linear function of the total values of choice option attributes (modified by
decay and inhibition). Here the extremity of the options does not matter. As a result, all-average
options are more likely to be selected later on in the decision process compared to earlier on in the
decision process. To put it more intuitively, random attention has a stronger effect early on in the deci-
sion process, where it can bias choice in favor of extreme options, compared later on in the decision
process. Bhatia (2013) discusses this property in detail and uses it to explain time dependence in
alignability effect tasks.

As allowing for deferral creates a bias in favor of the options that are highly preferred early on in
the choice process, we observe a lower choice probability for all-average options in the presence of
deferral, compared to when deferral is not allowed. Indeed, using the choice options introduced above
and displayed in Fig. 1, we find that x6 is never selected in the presence of deferral, but that it is
selected 37% of the time in the absence of deferral, that is Rel(x6, x7 |x6, x7) = 0.37 > Rel(x6, x7 |x6, x7,
D) = 0. Additionally, we have Pr(D|x6, x7, D) = 0.63.

To further explore the relationship between deferral and decision time, consider Fig. 8. The vertical
axis in Fig. 8 presents the relative choice proportion of x6 compared to x7, Rel(x6, x7 |x6, x7, D), as well
as the probability of deferral. The horizontal axis is the deferral time limit T. As T is increased, decision
makers have more time to make their choice, and the relative choice proportion of x6 increases. After
T = 15, we find that this proportion stabilizes at around 40%, and the probability of deferral similarly
stabilizes at 0%. This explicitly demonstrates that the all-average option is more likely to be selected
later on in the decision process, with the highest choice probability if the deferral time limit is
T
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Fig. 8. The effect of the deferral time limit, T, on the extreme options effect. Here the solid line plots Rel(x6, x7 |x6, x7, D) and the
dashed line plots Pr(D|x6, x7, D).
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especially large (or equivalently, completely absent). Note that choice proportions for T < 5 are not dis-
played, as neither of the options are chosen for these values of T, and the relative choice proportion is
not defined. As with the common and unique attributes effects, the relationship between the choice of
extreme options and the presence of deferral is primarily a product of sequential attribute sampling,
and does not depend on the associative mechanisms of AAM. Thus we can observe the above effect
even if a0 =1, and our model reduces to the LCA. Indeed as this associative mechanism generates a
bias in favor of extreme options in the absence of deferral (see Bhatia, 2013), we find that this extrem-
ity effect is enhanced with the LCA model, in which the choice probability of the all-average option in
the absence of deferral is higher than in the AAM model. For example when a0 =1, we find that x6 is
never selected in the presence of deferral, but that it is selected 64% of the time in the absence of defer-
ral, that is Rel(x6, x7 |x6, x7) = 0.64 > Rel(x6, x7 |x6, x7, D) = 0. The extreme options effect also emerges
when we further restrict l = 0, with Rel(x6, x7 |x6, x7) = 0.66 > Rel(x6, x7 |x6, x7, D) = 0, implying that
inhibition is also not necessary for this effect.

4.7. Effect 7: asymmetric dominance

AAM generates the asymmetric dominance effect due to associative attentional weights: the addi-
tion of the novel option increases the attention towards its primary attribute, subsequently biasing
choice in favor of the initial options that are strongest on this attribute. Sequential sampling imposes
time dependence, leading to a higher increase in the preferences for options that are strongest on the
most sampled attribute, early on in the decision process. With the asymmetric dominance effect, the
presence of the decoy increases the sampling probability of the dominant option’s primary attribute,
making this option seem especially desirable at early periods. The dominant option is thus more likely
than its competitor to cross the choice thresholds before the deferral time limit than it is to do so at
later time periods. This leads to a higher asymmetric dominance effect in the presence of deferral. It is
important to note that intuitively this is the same mechanism as that underlying Effect 6, but unlike in
Effect 6, the associative attentional mechanisms for this effect create a bias in favor of the dominating
option early on in the decision.

Taking the choice options shown in Fig. 1, we find that that the relative choice probability of x1 over
x2, from the set {x1, x2, x3}, is higher in the presence of deferral than in the absence of deferral. More
specifically we have Rel(x1, x2 |x1, x2, x3, D) = 0.71 > Rel(x1, x2 |x1, x2, x3) = 0.59. As x1 and x2 are sym-
metric on identical attributes their relative choice probabilities in the absence of the decoy are always
50%, regardless of deferral (subsequently, since both Rel(x1, x2 |x1, x2, x3, D) > 0.5 and Rel(x1, x2 |x1, x2,
x3) > 0.5 we are observing the main asymmetric dominance effect both with and without deferral,
though it is stronger with deferral). Additionally, we observe Pr(x3 |x1, x2, x3, D) = Pr(x3 |x1, x2, x3)
= 0, as the decoy option is never chosen.

These results are illustrated in Fig. 9a, which as in Fig. 8, presents choice probabilities as a function
of the deferral time limit T. Specifically the vertical axis plots both Rel(x1, x2 |x1, x2, x3, D) and Pr(D|x1,
x2, x3, D). We find that the strength of the asymmetric dominance effect decreases with increase in the
deferral time limit, though it is always predicted to emerge, regardless of the value of this limit. Again
this effect stabilizes around T = 15, with Rel(x1, x2 |x1, x2, x3, D) = 0.59. At this point the probability of
deferral is 0% and we have Rel(x1, x2 |x1, x2, x3, D) = Rel(x1, x2 |x1, x2, x3). This explicitly demonstrates
that the dominant option is more likely to be selected early on in the decision process, with the high-
est choice probability if the deferral time limit is especially small.

Not surprisingly the above effect disappears if the associative mechanism in the proposed model is
disabled. This is illustrated in Fig. 9b, which is identical to Fig. 9a except for the fact that we have
a0 =1. As the associative bias in AAM is necessary to generate the asymmetric dominance effect,
we fail to observe both this effect, and its relationship in deferral in Fig. 9b. Particularly, the relative
choice probability of the dominant option remains around 50% independently of the deferral time
limit T. In contrast Fig. 9a showed that this choice probability decreased with T but nonetheless
remained consistently above 50%.

Finally, prior work has found that the asymmetric dominance effect weakens with externally
imposed time limits (Pettibone, 2012; Trueblood et al., 2014), and the initial AAMmodel is able to cap-
ture this effect, as shown in Bhatia (2013). This is compatible with the result presented in this section
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Fig. 9. The effect of the deferral time limit, T, on the asymmetric dominance effect. In the left panel (a) the solid line plots Rel(x1,
x2 |x1, x2, x3, D) and the dashed line plots Pr(D|x1, x2, x3, D) when the associative mechanism is enabled. In the right panel (b) the
solid line plots Rel(x1, x2 |x1, x2, x3, D) and the dashed line plots Pr(D|x1, x2, x3, D) when the associative mechanism is disabled.
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(which shows that the asymmetric dominance effect strengthens with deferral-based time limits), as
the findings involving externally imposed time limits do not allow for choice deferral. More specifi-
cally, the simulations in Bhatia (2013) assume that decisions with externally imposed time limits
aggregate attribute values until the time limit is crossed, at which point they select their most pre-
ferred option. If we implement this mechanism with the above parameters, we find that the asymmet-
ric dominance does indeed weaken with externally imposed time limits, without deferral (consistent
with the findings in Pettibone, 2012; Trueblood et al., 2014 and the simulations in Bhatia, 2013). The
reason this happens is due to the difference between threshold crossing probabilities and modal pref-
erence rankings. In the choice from {x1, x2, x3}, x1 is proportionally more likely to cross Q than x2 at
earlier time periods. This is despite the fact that the probability that the preference for x1 is higher
than the preference for x2 is lower for earlier time periods relative to later time periods.
4.8. Effect 8: compromise

The influence of deferral on the strength of the compromise effect is explained by our approach
using both associative attentional weights and sequential attribute sampling. As with the asymmetric
dominance effect described above, associative connections increase the attentional probability of the
decoy’s primary attribute, and sequential sampling imposes a time dependence that leads to a higher
increase in the preferences for options that are strongest on this attribute, early on in the decision pro-
cess. With the asymmetric dominance effect it is the dominating option that is the strongest on the
most sampled attribute, and thus the target option that is most likely to be chosen earlier in the deci-
sion. With the compromise effect, however, it is the extreme decoy option that is strongest on the
most sampled attribute in the presence of the decoy. This extreme option disproportionality competes
with the compromise option, reducing its choice probability. As in the all-average and extreme options
in the above section, this competitive effect happens mainly at early time periods. As a result of this,
the compromise effect is weakened at early time periods, and is thus less likely to emerge when defer-
ral is a possibility. Taking the choice options shown in Fig. 1, we find that that the relative choice prob-
ability of x1 over x2, from the set {x1, x2, x7}, is lower in the presence of deferral than in the absence of
deferral. More specifically we have Rel(x1, x2 |x1, x2, x7) = 0.60 > Rel(x1, x2 |x1, x2, x7, D) = 0. Again note
that the relative choice probabilities of x1 and x2 are 50% in {x1, x2}, regardless of deferral, as the
options are symmetric on equally desirable attributes. The fact that Rel(x1, x2 |x1, x2, x7) > 0.5 > Rel
(x1, x2 |x1, x2, x7, D) thus indicates that we are getting the compromise effect in the absence of deferral
but that it is reversed when deferral is allowed. Additionally, we observe a higher overall choice prob-
ability for the decoy in the absence of deferral, with Pr(x7 |x1, x2, x7) = 0.36 > 0.26 = Pr(x7 |x1, x2, x7, D),
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though this is merely due to the fact the deferral probability is zero in the absence of deferral. Overall,
in a manner consistent with Effect 5, we find that Rel(x1, x7 |x1, x2, x7) > Rel(x1, x7 |x1, x2, x7, D) and Rel
(x2, x7 |x1, x2, x7) > Rel(x2, x7 |x1, x2, x7, D).

We can observe the above effects in more detail in Fig. 10a which plots both Rel(x1, x2 |x1, x2, x7, D)
and Pr(D|x1, x2, x7, D) as a function of T. We find that the strength of the compromise effect decreases
with a decrease in the deferral time limit, and can actually reverse when the time limit is especially
low. Ultimately the compromise effect emerges for a large enough deferral time limit. For this time
limit, the probability of deferral is zero and corresponding choice probabilities of options x1 and x2
are equal to choice probabilities in the absence of deferral. Fig. 10b shows that as with the asymmetric
dominance effect, the compromise effect also relies on the associative mechanism in AAM. Although
we do obtain an increase in the choice probability of the compromise option in the absence of deferral
when a0 =1, this probability is unable to cross 50% and thus a restricted LCA model without associa-
tive attention is unable to generate the compromise effect.
4.9. A note on decision difficulty

Some of the effects described above, particularly Effects 1–6, could be understood in terms of dif-
ficulty, in that harder choices lead to increased deferral. Indeed, a number of scholars have reported a
positive association between perceptions of decision difficulty and the incidence of choice deferral
(e.g. Novemsky, Dhar, Schwarz, & Simonson, 2007). Although decision difficulty within the types of
tasks accumulator models are typically applied to is studied in terms of discriminability, and subse-
quently the relative choice probabilities of options, here we could adopt a broader definition of diffi-
culty in terms of not only the ability of the decision makers to determine which option is better than
the other, but also the ease in making tradeoffs between the options, and the desirability of the avail-
able options. The role of tradeoffs in decision difficulty has been studied extensively in multiattribute
choice (e.g. Chatterjee & Heath, 1996; Luce, Bettman, & Payne, 2001). Additionally, the relationship
between difficulty and the overall desirability of the options is part of many lay definitions of diffi-
culty. After all, the choice between a rock and a hard place, as in the common idiom, is considered dif-
ficult largely because both rocks and hard places are relatively undesirable.

It seems that this broader notion of difficulty can provide an intuitive unifying principle regarding
the types of settings in which decisions take longer in the absence of deferral, and thus decisions in
which choice is likely to be deferred when deferral is allowed. Effects 1 and 3 can be understood in
T
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Fig. 10. The effect of the deferral time limit, T, on the compromise effect. In the left panel (a) the solid line plots Rel(x1, x2 |x1, x2,
x7, D) and the dashed line plots Pr(D|x1, x2, x7, D) when the associative mechanism is enabled. In the right panel (b) the solid
line plots Rel(x1, x2 |x1, x2, x7, D) and the dashed line plots Pr(D|x1, x2, x7, D) when the associative mechanism is disabled.
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terms of discriminability and subsequently relative choice probability: For both these effects the rel-
ative choice probabilities between the options in the absence of deferral are higher in choice sets
where deferral is less likely. Effect 2 relates closely to the absolute desirability of the chosen option,
and shows how changing the absolute desirability of the choice set can alter deferral. Finally, Effects
4 and 5 can be seen as involving different types of tradeoffs (that is, degrees of overlap between the
attributes of the choice options), while keeping both absolute and relative desirabilities constant.

We tested the broad explanatory scope of this account of difficulty by randomly generating 1000
choice pairs and examining the relationship between our three components of decision difficulty
and deferral probability in these choice pairs. Our choice pairs involved two-attribute options, with
each attribute amount being drawn from an independent uniform distribution from the range [5,
15]. For each choice pair {xi, xj} we examined the absolute difference in the choice probabilities of
the options in the absence of deferral, |Pr(xi |xi, xj) � Pr(xj |xi, xj)|, in order to capture discriminability;
the total amounts of the attributes in the pair, xi1 + xi2 + xj1 + xj2, in order to capture desirability; and
the cosine similarity of the choice option vectors, xi � xj/[||xi|| � ||xj||], in order to capture tradeoffs.
We then ran a simple linear regression to predict deferral probability (a continuous variable, obtained
from our simulations) in our 1000 randomly generated choices, using these three variables. We found
that all three effects were significantly associated with deferral probability, so that choice pairs with
large differences in choice probabilities in the absence of deferral, with large absolute amounts of
attributes, and with large cosine similarities, had the lowest deferral probabilities (p < 0.001 for all
three variables).

4.10. Summary

In this section we have discussed how the composition of the choice set can influence the proba-
bility of deferral and additionally how allowing choice to be deferred can alter underlying choice prob-
abilities, in the proposed model. Both these properties stem from the deferral time limit mechanism
instantiated within a sequential sampling model, which generates a time dependence in the choice
task. Easier decisions, which are typically made quickly are associated with low deferral rates and
objects that are chosen quickly are more likely to be chosen in the presence of deferral than in the
absence of deferral. AAM presents one approach to modeling choice set dependence within a sequen-
tial sampling framework, and its dynamics, when coupled with this time limit mechanism, can explain
the effects of dominance, absolute desirability, relative desirability, common vs. unique attributes, and
alignable attributes on deferral (Effects 1–5), as well as the effect of deferral on the choice probabilities
of extreme options, and on the strength of the asymmetric dominance and compromise effects (Effects
6–8). Note that although we have not explicitly shown the emergence of the choice overload effect
(Chernev et al., 2015; Iyengar & Lepper, 2000; Scheibehenne et al., 2010), the proposed model is able
to generate an increase in deferral probability as additional options are added to the choice set, if these
additional options modify existing dominance relations, affect the absolute and relative desirability of
the choice set, or alter which attributes are common, unique, and alignable in the choice set (see e.g.
Chernev et al., 2015).

As shown, the associative attention mechanisms proposed by AAM are not necessary for all the
effects. Indeed the absolute desirability, relative desirability, common vs. unique attributes, and
extreme options effects emerge merely due to the dynamics of sequential attribute sampling and
accumulation with leakage and inhibition, and thus can be obtained by a restricted LCA variant of
the proposed model in which a0 =1. Additionally, out of these four effects, only the relative desirabil-
ity effect needs inhibition, and the remaining three can be obtained with a simple leaky race model
which further simplifies AAM with a0 =1 and l = 0. Ultimately, AAM is necessary only for describing
deferral-based effects when these involves instances of dominance, compromise, and alignability,
which are effects that AAM was generated to explain. In this sense its primary role within the pro-
posed framework is as a back-end model, providing a theory of choice set dependence with which
the interaction between deferral and choice set dependence, predicted by the deferral time limit,
can be tested. A model that sequentially samples attributes and accumulates them with leakage
and inhibition, and contains a time limit for deferral, is sufficient for effects not directly related to
choice set dependence.
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5. Novel predictions of the deferral time-limit

The deferral-based time limit proposed by Jessup et al. (2009) and studied in this paper also makes
a number of novel predictions. These predictions pertain primarily to the time taken to make the deci-
sion in the presence of deferral, a variable that hasn’t yet been experimentally examined in detail. In
this section we outline four of these predictions, which are generated by the deferral-based time limit,
independently of processes controlling preference accumulation and the influence of the choice set.
These predictions are, in this sense, a property of all models with a deferral-based time limit, including
the above AAM implementation, its restricted LCA variant obtained by setting a0 =1, a further
restricted race model with l = 0, and the model proposed by Jessup et al. (2009).

Just as we have been using Pr(xi |x1, x2, . . . ,xN), Pr(xi |x1, x2, . . . ,xN, D), and Pr(D|x1, x2, . . . ,xN, D) to
represent choice and deferral probabilities, we will use DT(xi |x1, x2, . . . ,xN), DT(xi |x1, x2, . . . ,xN, D),
and DT(D|x1, x2, . . . ,xN, D) to represent expected choice and deferral decision times. In most settings
we will be interested in comparing the decision times associated with an active choice with the deci-
sion times associated with deferral, instead of considering the decision time associated with a specific
choice option. Here we will use DT(C|x1, x2, . . . ,xN) and DT(C|x1, x2, . . . ,xN, D) to describe decision
times associated with the selection of one of the N available options, in the absence and in the pres-
ence of deferral. Finally, when the predictions are independent of the composition of the choice set we
will shorten the notation to DT(C|C), DT(C|C, D), DT(D|C, D), and DT(C or D|C, D), with DT(C|C) and
DT(C or D|C, D) representing the overall decision times in the absence and presence of deferral.

5.1. Prediction 1

The first main prediction draws a relationship between the average decision time in the absence of
deferral and the deferral probability. Recall that higher accumulation rates lead to lower rates of defer-
ral, in the above model. This implies that choices in which deferral is likely should be associated with
longer decision times in the absence of deferral, compared to similar choices in which deferral is unli-
kely. Essentially, since deferral is formalized as a time limit, a higher likelihood of crossing this time
limit implies that choice would have taken longer if this time limit was not present. More formally, for
any choice set C, DT(C|C) and Pr(D|C, D) should be positively associated with each other.

5.2. Prediction 2

The second main prediction of the deferral-based time limit compares the time to make an active
choice in the presence of deferral with the time to make an active choice in the absence of deferral.
Particularly, as the deferral time limit cuts off choice at a certain time, active choices made in the pres-
ence of deferral should, on average, be associated with lower decision times compared to the setting in
which deferral is not allowed. More formally, for any choice set C, we should have DT(C|C, D) < DT(C|
C).

Note the above logic does not necessarily give us DT(D|C, D) < DT(C|C). This can be understood in
more detail by considering Prediction 1, which states that the average decision time in the absence of
deferral is higher if the probability of deferral is greater. This implies that this decision time should be
higher than the decision time associated with choosing deferral, when deferral is especially likely to be
chosen. Indeed, when Pr(D|C, D) = 1 and deferral is always chosen, the deferral time limit will always
be crossed before a decision would have been made in the absence of deferral, giving us DT(D|C, D)
< DT(C|C). More generally, we should observe DT(D|C, D) < DT(C|C) if Pr(D|C, D) is high enough. In
contrast, if Pr(D|C, D) is low enough, we may observe DT(D|C, D) > DT(C|C), as most active choices
would be made before the deferral time limit is crossed.

5.3. Prediction 3

Although it may be the case that the time to defer choice when deferral is allowed is longer than
the time to make an active choice when deferral is not allowed, it can never be the case that the overall
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decision time when deferral is allowed is longer than the overall decision time when it isn’t. More for-
mally, the proposed model predicts that for any choice set C, we should have DT(C or D|C, D) < DT(C|
C). The logic for this is similar to that of Prediction 2: The deferral time limit cuts off choice at a certain
time regardless of whether an active choice has been made. Thus the time taken to make a choice in
the deferral condition is always less than the time to make the corresponding choice when deferral is
not allowed.
5.4. Prediction 4

The final prediction compares the time associated with making an active choice to the time asso-
ciated with deferring choice, in the presence of deferral. When deferral is allowed, active choices must
always be made before the deferral time limit is crossed. If they are not made by this time limit, choice
is deferred and the decision ends. This implies that active choices are quicker than deferred choices, in
the presence of deferral, that is, DT(C|C, D) < DT(D|C, D).
6. Experimental test of novel predictions

We ran a novel experiment to test the four main predictions of the deferral time limit, discussed
above. Our experiment obtained decision times and choice probabilities in binary choices with and
without deferral. Our choice options were popular films, and participants were asked to select which
of a pair of films they prefer, using a naturalistic experimental design. Prior to this choice task we also
obtained participant ratings of the films, allowing us to control for film desirability effects.
6.1. Method and participants

58 participants (mean age = 21.43, 56% male) performed this experiment in a behavioral labora-
tory, for a monetary payment. Participants were required to choose which of two films they prefer.
The films used in this experiment corresponded to the top 100 most voted-on films on the website
www.imdb.com, and can thus be seen as representing the most popular films in contemporary cin-
ema. These films were presented to the participants using images of their corresponding film posters,
again obtained from www.imdb.com. The images corresponding to each available choice were pre-
sented side by side in each decision.

Participants were presented with two blocks, each consisting of the same 100 choices. In one block
the choice between the two movies was forced, and participants had to make their selection using the
left and right arrow keys (corresponding to the film presented on the left or right side of the screen). In
the other block, the decision makers could click the left or right keys to make their choice, or else defer
their choice by clicking the up arrow key. The instructions were created to avoid any suggestion of an
explicit time limit (e.g. to suggest that participants should defer if they cannot decide quickly enough)
or that deferral was a third comparable option (e.g. in the form of a status quo or default movie). More
specifically, the instructions stated that if participants preferred the movie on the left/right then they
should press the left/right arrow. If they could not make a decision about which of the two movies
they preferred then they should press the up arrow instead. When subjects made a choice, for an item
or deferral, the options disappeared and a fixation cross was presented for 1 s before the next choice
was presented. There was no time out mechanism and participants could take as long as they wanted.
The two blocks were presented sequentially, and the order that the two blocks were presented in, the
order of their component choices, and the arrangement of the film posters within each choice trial (left
or right), was randomized.

Before starting the choice task, participants rated each of the 100 films on a scale of 1–7, corre-
sponding to how much they would like to watch each film. In the rating task, each film was presented
separately.

http://www.imdb.com
http://www.imdb.com
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6.2. Qualitative results

In the analysis in this section we have excluded all responses that took less than 0.2 s or greater
than 10 s. This is 0.6% of our data. We use relatively high cutoff for outliers, compared to cutoffs typ-
ically used in low-level tasks (e.g. Ratcliff, 1993), due to the relative complexity of value-based deci-
sion making. Including outlier responses does not affect any results in this section.

6.2.1. Choice probabilities
We can first examine choice and deferral probabilities. When an active choice is made in the exper-

iment, the option that has a higher rating is chosen 83% of the time, which is significantly different to
50%, when examined using a logistic regression with participant-level random intercepts (b = 1.76,
z = 17.25, p < 0.01, 95% CI = [1.56, 1.96]). More generally, an option is more likely to be chosen the
higher it is rated relative to its competitor (b = 0.63, z = 47.73, p < 0.01, 95% CI = [0.61, 0.66]). We also
find that the option that is on the left of the screen is chosen 55% of the time, which is also significantly
different to 50% (b = 0.22, z = 5.72, p < 0.01, 95% CI = [0.14, 0.29]). The tendency to choose options with
higher ratings or to choose options on the left of the screen, does not vary as a function of the deferral
condition (p > 0.05 in all cases).

We find that choice is deferred 23% of the time when it is allowed. Overall there is a high dispersion
in individual tendencies to defer choice, with six participants never deferring choice, and two partic-
ipants deferring choice more than half of the time. Additionally, consistent with the absolute desirabil-
ity effect (Effect 2), we find that the deferral probability decreases as a function of the mean ratings of
the available options, when examined using a logistic regression with participant-level random inter-
cepts (b = �0.73, z = �23.15, p < 0.01, 95% CI = [�0.79, �0.67]). Likewise, consistent with the relative
desirability effect (Effect 3), we find that deferral probability decreases as a function of the absolute
difference in ratings of the available options (b = �0.37, z = �14.20, p < 0.01, 95% CI = [�0.41,
�0.31]). This experiment thus replicates some of the results of Tversky and Shafir (1992), Dhar
(1997), Chernev and Hamilton (2009), and White et al. (2015).

6.2.2. Main predictions
Now let us examine decision times. We find that the average time decision makers take across our

two conditions is 1.79 s (SD = 1.21). As can be seen in Fig. 11a, this distribution is positively skewed, as
expected. The distributions for all decision times in the two conditions, and deferral times and active
choice times in the deferral condition, are similarly skewed, as is shown in Fig. 11b–e.

Prediction 1 states that decision makers should take longer to make a decision from a particular
choice set in the absence of deferral, if they are more likely to defer choice in this choice set when
deferral is allowed. Recall that our experiment offered participants each choice set twice: once as part
of a forced choice, without the possibility of deferral, and once as part of a free choice, with the pos-
sibility of deferral. We can thus use the data from our experiment to test Prediction 1. In our data we
find that the average decision time for a choice set in the absence of deferral is 2.58 s (SD = 1.50), if the
decision maker does defer choice in the corresponding choice set when deferral is allowed. In contrast,
the average decision time for a choice set in the absence of deferral is 1.87 s (SD = 1.23), if the decision
maker does not defer choice in the corresponding choice set when deferral is allowed. This is a statis-
tically significant difference, when examined using a linear regression with participant-level random
intercepts (b = 0.73, z = 17.15, p < 0.01, 95% CI = [0.64, 0.81]).

Prediction 2 states that decision makers should always be quicker to make active choices in the
presence of deferral compared to the absence of deferral. In our data we find that the average decision
time for an active choice in the presence of deferral, DT(C|C, D) is 1.52 s (SD = 0.96), whereas the aver-
age decision time for an active choice in the absence of deferral, DT(C|C) is 2.01 s (SD = 1.35). This is a
statistically significant difference allowing for participant-level random effects (b = �0.49, z = �21.82,
p < 0.01, 95% CI = [�0.54, �0.45]).

Prediction 2 is actually stronger than that tested using the above regression. Essentially, as we
expect DT(C|C, D) < DT(C|C) for any choice set and any participant, DT(C|C, D) should stochastically
dominate DT(C|C). This means that for any time x, the distribution of DT(C|C, D) should have a higher
cumulative probability than the distribution of DT(C|C). Stochastic dominance can be tested using a
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Fig. 11. (a–e) Relative frequency histograms for all decision time data (a), all decision time data when deferral is not allowed
(b), all decision time data when deferral is allowed (c), decision time data for deferred choice when deferral is allowed (d), and
decision time data for active choice when deferral is allowed (e). Decision time is in seconds.
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Kolmogorov–Smirnov test for ordering, which is nonparametric and does not assume any distribu-
tional form for our decision times (see Heathcote, Brown, Wagenmakers, & Eidels, 2010). This test uses
a statistic proportional to the largest positive difference between one CDF and another to test whether
the first is significantly larger than the other (i.e. associated with higher probabilities for any given
outcome). If one CDF is indeed shown to be significantly larger than the other, and the other is shown
to not be significantly larger than the first, then the variable corresponding to the first distribution is
assumed to dominate the variable corresponding to the second distribution. Applying this test to our
observed distributions for DT(C|C, D) and DT(C|C) reveals that DT(C|C, D) is significantly larger than
DT(C|C) (p < 0.01, KS = 0.22) and that DT(C|C) is not significantly larger than DT(C|C, D) (p = 0.98,
KS = 0.002), establishing stochastic dominance. Stochastic dominance is further illustrated in Fig. 12
using the empirical cumulative distribution functions of DT(C|C, D) and DT(C|C) with 95% confidence
bounds.

In discussing Prediction 2 in the above section, we also noted that the time taken to defer a choice
when deferral is allowed will be lower than the time taken to make an active choice in the absence of
deferral, if deferral is especially likely. In this experiment we do not obtain multiple observations for
each choice set under deferral, so we cannot distinguish between decisions that are likely to end in
deferral and decisions that are unlikely to end in deferral (all we have is a single observation indicating
whether or not the participant deferred choice in that particular choice set). However, we can
nonetheless examine the difference between deferral decision times and corresponding active choice
decision times in the absence of deferral. We find that deferral, when it happens, typically takes less
time than active choices where deferral is not allowed. More specifically, we find that the average
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Fig. 12. The empirical cumulative distribution functions for DT(C|D, C), DT(D or C|D, C), DT(D|D, C), and DT(C|C), ordered from
top/left to bottom/right respectively. Here the dotted grey lines on the boundaries of each CDF indicate 95% confidence intervals
for that curve. Decision time is in seconds.
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decision time for a deferred choice, DT(D|C, D) is 1.73 s (SD = 1.14), whereas the average decision time
for an active choice in the absence of deferral, DT(C|C) is 2.01 s (SD = 1.35). This is a statistically sig-
nificant difference (b = �0.27, z = �6.86, p < 0.01, 95% CI = [�0.35, �0.19]) when established using a
regression with participant-level random effects. A Kolmogorov–Smirnov test for stochastic domi-
nance also establishes that DT(D|C, D) dominates DT(C|C) (p < 0.01 and KS = 0.12, and p = 0.87 and
KS = 0.01 for the two comparisons respectively). This difference can also be observed in Fig. 12.

Prediction 3 states that regardless of the time it takes to make a deferred choice, overall decision
times in the presence of deferral should be lower than overall decision times in the absence of deferral.
The observations of DT(C|C, D), DT(D|C, D), and DT(C|C) discussed above already indicate that this is
the case, and indeed, we find that on average, the decision time in the presence of deferral, DT(C or D|
C, D) is only 1.56 s (SD = 1.01), compared to the average decision time in the absence of deferral, DT(C|
C), which is 2.01 s (SD = 1.35). Again this is a statistically significant difference both when tested using
regressions with random effects (b = �0.45, z = �21.40, p < 0.01, 95% CI = [�0.49, �0.41]) and when
tested using the Kolmogorov–Smirnov test for stochastic dominance (p < 0.01 and KS = 0.20, and
p = 0.94 and KS = 0.003 for the two comparisons), and can be seen in Fig. 12.

Finally Prediction 4 states that decision times when deferral is allowed should always be quicker in
active choices compared to deferred choice. This too is confirmed in our data. As already outlined
above, the average decision time for an active choice in the presence of deferral, DT(C|C, D) is
1.52 s (SD = 0.96), whereas the average decision time for a deferred choice, DT(D|C, D) is 1.73 s
(SD = 1.14). This is also statistically significant using both a regression with participant-level random
effects (b = �0.27, z = �6.55, p < 0.01, 95% CI = [�0.36, �0.19]), and using the Kolmogorov–Smirnov
test for stochastic dominance (p < 0.01 and KS = 0.11, and p = 0.99 and KS = 0.00 for the two compar-
isons), and can be seen in Fig. 12. Note that Predictions 2–4 can equivalently be seen as constraints on
the orderings of DT(C|C, D), DT(D|C, D), DT(C or D), and DT(C|C). Fig. 12 shows that we obtain DT(C|C,
D) < DT(C or D|C, D) < DT(D|C, D) < DT(C|C) in our data, indicating that these constraints are satisfied.
6.3. Quantitative results

The above section has shown that qualitative patterns predicted by the proposed model emerge in
that data. Now we will perform a model fitting exercise to rigorously test how well this model can
explain the data. Note that it is difficult to fit the entire AAM-based model or its more restrictive
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LCA variant due to both data limitations (we do not know the attribute compositions of the choice
options) and the computational complexity of the models. It is however possible to fit a more generic
model of the deferral time limit, that is largely agnostic of the back-end guiding the accumulation of
preference.

6.3.1. Outline of models
Consider for example a decision maker whose decision time in the absence of deferral, for a partic-

ular choice set, has a cumulative distribution function FS. Also let us assume that the distribution of the
deferral time limit for our decision maker is given by FT, with T being independent of S. Now in forced
choice, decision times for a given choice set are obtained by taking a sample from FS. In free choice,
decision times for the same choice set are obtained by taking a sample from both FS and FT. If T is less
than S then the deferral time limit is crossed before a decision is made, and choice is deferred. In con-
trast if S is less than T then a choice is made without deferral. In either case, probability of deferral is
given by Pr(T < S), and the decision time is given by some distribution FR with R = min(S, T).

Note again that this generalization of our model is agnostic about the underlying processes respon-
sible for our decision time distributions. If we believe that AAM is the correct underlying model, then
FS is obtained from its accumulation to threshold dynamics. This generalization is not however agnos-
tic about the mechanisms underlying deferral. The above formalization necessarily assumes that deci-
sions are deferred if a decision is not made by the deferral time limit T.

In the absence of tractable decision time distributions for AAM (or its LCA variant), we can test the
above model with a more generic distribution. In the following fits we will assume that both FS and FT
are distributed according to the Inverse Gaussian distribution (also known as the Wald distribution),
with FS � IG(lS, kS) and FT � IG(lT, kT). Here l characterizes the mean of this distribution, and k char-
acterizes the shape of the distribution.

Recall that each of the 100 choice sets were offered twice to the participant: once with the possi-
bility of deferral, and once without. Thus for each of the 58 participants, we have three main observa-
tions: 1. The time it took the participant to make a forced choice for the choice set, 2. The time it took
the participant to make a free choice for the choice set, and 3. Whether or not the participant deferred
the decision in the free choice. The deferral time limit model outlined here can be fit to this
participant-level data with the simplifying assumption that decision times for different choice sets
stem from the same distribution. Particularly, for each choice set offered to a participant, the likeli-
hood of observing the participant’s particular decision time, a, in the forced choice is given by fS(a).
Additionally, as S and T are independent, the likelihood of choice being deferred in free choice, and
of observing a particular deferral decision time, a, is given by fT(a) � [1 � FS(a)]. Likewise the likelihood
of choice not being deferred in free choice, and of observing a particular choice decision time, a, is
given by fS(a) � [1 � FT(a)]. Note that the overall likelihood of observing a decision time a in a free
choice task is fT(a) � [1 � FS(a)] + fS(a) � [1 � FT(a)]. A standard check shows that for a random variable
R = min(S, T), we do indeed obtain fR(a) = fT(a) � [1 � FS(a)] + fS(a) � [1 � FT(a)] if S and T are independent.

With the above assumption, each participant-level model fit will require four parameters, lS, kS, lT,
and kT. With these four parameters we will be able to predict the probability of deferral, the distribu-
tion of decision times if choice is deferred in a free choice task, the distribution of decision times if
choice is not deferred in a free choice task, the overall distribution of decision times in a free choice
task, and the overall distribution of decision times in a forced choice task.

Additionally, we will fit a baseline model on the participant level. This simple baseline model
assumes that deferral does not interact with decision time, or more specifically that all decision times
stem from the same distribution, FS, and that the probability of choosing deferral once this decision
time is realized, is completely independent of the decision time itself. For this model, the likelihood
of observing a decision time a, in either the forced choice or the free choice is given by fS(a). The like-
lihood of choice being deferred in free choice, and of observing a particular choice decision time a, is
pd � fS(a), where pd is the probability of deferring choice once a particular decision time is realized.
Likewise the likelihood of choice not being deferred in free choice, and of observing a particular choice
decision time, a, is given by (1 � pd) � fS(a). Again, we will assume that FS is an Inverse Gaussian distri-
bution. Thus the model has three parameters, pd, the probability of deferral, as well as, lS and kS, which
characterize all decision time distributions in the free and forced choice tasks. Comparing our
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proposed model’s fits to the baseline model can help us determine whether our dynamic theory of
deferral is in fact superior to a simplistic theory that assumes that deferral is a static phenomenon,
with deferral probability being independent of decision time.

We chose the Inverse Gaussian distribution for our main model and our baseline model, as it is par-
simonious, with only two parameters. It is also easy to fit, as it has a tractable likelihood function.
Moreover, the Inverse Gaussian is psychologically plausible, as it has been used to study response time
distributions in low-level tasks (e.g. Stone, 1960), where it describes the first passage distribution of a
simple diffusion process.

We could equivalently use more complex distributions such as the Ex-Wald or the Ex-Gaussian
(Hohle, 1965; Schwarz, 2001) for modeling FS. These distributions also attempt to capture non-
decision components of response times, and they may ultimately give slightly better fits, though
we expect these non-decision components to have a smaller effect in preferential choice, where deci-
sions take much longer than corresponding motor and perceptual processes, compared to low-level
choice tasks. Ultimately though, our goal is not to test whether one function fits better than another,
but to test the proposed deferral time limit mechanism using a simple, generic decision time distribu-
tion, and to compare it with a non-dynamic baseline model with the same generic distribution.

Additionally, as we have modeled deferral as a time limit, it would be useful to adapt formal
insights regarding interval timing distributions to specify FT. One such insight involves a constant coef-
ficient of variation (CV), as suggested by scalar expectancy theory (Gibbon, 1977). Our assumption that
FT � IG(lT, kT) does not explicitly impose this (doing so, would require that kT = lT/k, for a constant
k = CV2). However, this restriction is not necessary in our experiment. Unlike experiments that test
for interval timing effects, we are not exogenously varying any interval time or time limit. Rather
we are assuming that each participant has their own (noisy) time limit, whose underlying distribution
is constant across trials. As such our fits, with flexible lT and kT across participants, are consistent with
a constant coefficient of variation model in which the CV does not vary across different intervals, but is
allowed to vary across participants. Indeed, it is useful to note that such a model of interval timing,
based on an Inverse Gaussian, has been used to study interval timing effects (Simen, Balci, Cohen, &
Holmes, 2011). That said, it may be possible to improve our fits by testing other distributions for inter-
val timing. However, once again, the goal of the model fitting exercise is to test the proposed deferral
time limit mechanism using a simple, generic decision time distribution, rather than examine which
specific distributions best describe the deferral time limit.

Finally, it is important to note that our use of the above distribution for FT (and, more generally a
stochastic T), does not alter any of the results presented earlier in this paper. As T is exogenous, choice
and deferral probabilities with a stochastic T can simply be seen as an average of choice and deferral
probabilities obtained from each (deterministic) T, weighted by the associated probabilities of these
Ts. Of course we would expect the stochastic time limit to provide a better descriptive account of
behavior than a deterministic T. Indeed a deterministic time limit would generate a censored decision
time distribution, which is unrealistic.
6.3.2. Results
All model fits in this paper were performed using maximum likelihood estimation, implemented

using the simplex routine in MATLAB. In order to avoid local maxima, each fit was performed 100
times, with starting points obtained at random from a uniform distribution with support [0, 10].
Out of these, the fit with the highest likelihood was used to describe the participant’s preferences. Fits
for the six participants who never deferred choice are excluded, as are fits for three participants who
deferred choice only once. This gives us a total of 49 participants to examine.

Best-fit participant-level parameter statistics for our proposed model and the baseline model are
provided in Table 2. These fits show that lT is typically greater than lS, with a median lT = 3.46 s
and lS = 1.97 s. This implies that the deferral time limit is more likely to become active later on in
the decision, which is consistent with our finding that choice is deferred relatively infrequently (again,
we observe a mean deferral probability of 0.23 across participants). Fig. 13 plots best-fit values of lT

and lS, to show this in more detail. It indicates that not only is lT typically greater than lS, but also
that there is substantial variation in lT across participants. This too is consistent with our findings that



Table 2
Best-fit model and baseline model parameters, and accompanying BIC values.

Median individual-level parameters Median BIC Group BIC

lT lS kT kS pd

Model 3.46 1.97 9.95 6.69 – 566 24,641
Baseline – 1.78 – 6.58 0.23 586 25,566

Fig. 13. Best-fit participant-level values of lT and lS. Note that the parameters of two participants are not displayed as these
participants had outlier values of lT (lT > 30).
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Fig. 14. Predicted vs. observed deferral probabilities for participants, based on participant-level best-fit parameters.
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there is substantial variation in deferral probabilities: While most people may be similar to each other
when making forced choices, the time limits they use while deferring choice differ greatly.

How well is our model able to predict deferral probabilities? Quite well. Overall, there is a corre-
lation of 0.89 between our predicted deferral probabilities and our observed deferral probabilities, for
the 49 participants whose data is fit in our study. A scatter plot demonstrating this is shown in Fig. 14.
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We can similarly examine our model’s predictions regarding decision times. Fig. 15a–d shows
observed and estimated quantiles for decision time distributions for all choices in which deferral is
allowed, for deferred choices when deferral is allowed, for active choices when deferral is allowed,
and for all free choices. Our estimated quantiles are averaged over participant-level quantiles. These
figures show that our model’s predicted quantiles display relatively little deviation from observed
quantiles, with an R2 value of 0.97 in Fig. 15a, c, and d distributions and an R2 value of 0.96 in Fig. 15b.
Note that there is some deviation between our predictions and the observed data in Fig. 15a and c for
the 50% and 70% quantiles, suggesting that our model may still be overestimating the time it takes for
decision makers to make active choices in the presence of deferral.

Let us now compare the above predictions with those generated by the baseline model, which
assumes that deferral is independent of decision time. The quantile estimates of this model are also
plotted in Fig. 15a–d. As can be readily seen in these figures, our proposed model greatly outperforms
the baseline model. The R2 values for this baseline model are 0.81, 0.93, 0.70 and 0.88 in Fig. 15a–d
respectively, and this model’s estimates are further from observed data than our model’s estimates
in 17 out of the 20 quantiles considered.

We can formally examine these differences by comparing the log-likelihoods of these two models.
We find our model generates a higher log-likelihood on the data for 84% of the participants. When
controlling for model flexibility using Bayes Information Criterion (BIC), we find that 68% of partici-
pants are better described by our model relative to the baseline. The median BIC for our model is
566.32 and the median BIC for the baseline model is 586.48. We can also examine BIC on the
group-level by assuming participant-level fixed effects, and aggregating participant-level log-
likelihoods. Such an approach involves 196 parameters (four for each participant) for our proposed
model, and 147 parameters (three for each participant) for our baseline model, as well as 14,700 data
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Fig. 15. (a–d) Decision time quantiles for observed data, model predictions, and baseline model predictions for all choices in
which deferral is allowed (a), for deferred choices when deferral is allowed (b), for active choices when deferral is allowed (c),
and for all free choices (d). Decision time is in seconds.
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points for both models (300 per participant), yielding a BIC of 24,641 for our proposed model and
25,566 for our baseline model. These results are summarized in Table 2.

6.4. Discussion

The deferral-based time limit mechanism assumed in the proposed model plays a key role in allow-
ing it to explain observed behavioral findings regarding choice deferral. This time limit also however
generates four new novel predictions regarding the interactions between decision times and choice
and deferral probabilities. These predictions are critical to the time limit mechanism, but are indepen-
dent of the specific back-end model and thus emerge both for the AAM and LCA models discussed in
this paper and the earlier Jessup et al. (2009) model.

The primary goal of this experiment was to test these four main predictions. Consistent with these
predictions, we found that 1. Decision times were longer in free choice when corresponding forced
choices were deferred, 2. Decision times were quicker when active choices were made in the presence
of deferral compared to when active choices were made in the absence of deferral, 3. Overall decision
times were lower in the presence of deferral, and 4. Active choices were quicker than deferred choices
when deferral was allowed.

Finally we fit a generic deferral time-limit model to the data. This model was able to successfully pre-
dict both individual-level deferral probabilities as well as decision time distributions in both free and
forced choice. Importantly this model significantly outperformed a baseline model which assumed that
deferral was independent of decision time. Both these quantitative model fits and the qualitative pat-
terns observed in our data provide strong support for a time-limit mechanism for deferring decisions.
7. General discussion

Choice deferral is the tendency to disengage from a choice task, and by doing so, postpone the deci-
sion to a later time or avoid the decision altogether. It is an important feature of everyday preferential
choice, and has, for this reason, received a lot of attention in psychology, marketing, and related fields
(e.g. Chernev, 2005; Chernev & Hamilton, 2009; Dhar, 1997; Dhar & Sherman, 1996; Gourville &
Soman, 2005; White et al., 2015; also Tversky & Shafir, 1992). Scholars of decision making in these
fields have discovered a number of systematic effects pertaining to the likelihood with which decision
makers defer choice, and the effect of allowing choice to be deferred.

In this paper we have attempted to explain existing findings regarding choice deferral using a time
limit applied to sequential sampling models of multi-attribute choice (initially proposed by Jessup
et al., 2009). According to this mechanism, an active choice is made if an activation threshold is
crossed before the time-limit. If not, choice is deferred. This mechanism predicts that choices that
are made slowly are more likely to be deferred, and that allowing for choice deferral increases the
choice proportion of options that are favorable early on in the decision.

In the first part of this paper we have formalized this mechanism within the associative accumu-
lation model (Bhatia, 2013), and shown that the combined approach is able to explain the eight exist-
ing deferral-based effects, including effects pertaining to the settings in which deferral is most likely,
and effects pertaining to the influence of deferral on choice proportions for the available options. The
time limit mechanism also generates a number of novel predictions regarding decision times and
choice probabilities, independently of the back-end model it is implemented with. We have tested
and confirmed these predictions in a novel experiment, in the second part of the paper. Additionally,
we have quantitatively fit a generic version of a time limit-based model to the experimental data, and
found that our fits are able to provide an accurate account of choice and deferral probabilities and
decision times observed in the experiment.

7.1. Predictions of related models

Our use of the associative accumulation model as a back-end process for instantiating the time
limit mechanism stems from its ability to explain a wide range of effects regarding choice set
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dependence. Many of these have been linked to choice deferral, and AAM, combined with the time
limit, provides a cohesive account of these diverse effects. That said, the unique assumptions of
AAM are not necessary to account for all the deferral findings documented thus far. Four out of the
eight effects studied in this paper also emerge with the associative mechanism in AAM is disabled,
and the model reduces to a leaky competitive accumulator (Usher &McClelland, 2001) with sequential
attribute sampling (Roe et al., 2001). Additionally, three out of these four effects can also be generated
by a simpler race model in which lateral inhibition is also disabled (one effect, however, requires inhi-
bition, and in fact reverses when inhibition is turned off). The effects that do require AAM are those in
which deferral interacts with the specific composition of the choice set, such as the presence of dom-
inated options. These are the types of settings that AAM was initially generated to explain.

It is possible that other existing sequential sampling models of choice set dependence could replace
AAM in the above modeling exercise, while retaining many of its key results. Consider, for example,
the multi-alternative decision field theory (MDFT) (Roe et al., 2001), which is the back-end sequential
sampling model tested alongside the time limit mechanism in Jessup et al. (2009). As with AAM, this
model attempts to explain the effects of dominated options and related facets of the choice set on
choice probabilities. Unlike AAM, however, MDFT assumes that attribute attention is independent
of the composition of the choice set. Rather, changing the choice set alters the inhibitory connections
between the available options, thereby biasing choice. Jessup et al. (2009) found that this model, com-
bined with the time limit mechanism, is able to generate a choice overload effect. Although Jessup
et al. did not study Effects 1–8, it is entirely possible that Jessup et al.’s time limit-based instantiation
of MDFT could explain findings such as the reduction in deferral probabilities in the presence of dom-
inated options. Additionally, this model, like the restricted LCA model tested in this paper, assumes
leaky competitive accumulation, and thus should be able to account for the effects that can be
obtained using only LCA (without the assumption of associative attention).

There are also other relevant sequential sampling models. One such model is the multi-attribute
leaky competitive accumulator (MALCA) (Usher & McClelland, 2004) which assumes loss-averse
attribute-wise comparisons, instead of association based attentional biases. In this model changing
the composition of the choice set affects whether choice options are seen as gains or losses on their
attributes, subsequently changing how these attributes are aggregated into preferences. As with
AAM, LCA, and MDFT, and as suggested by its name, this model also features leaky competitive accu-
mulation. Likewise, the multi-attribute linear ballistic accumulator (MLBA) (Trueblood et al., 2014)
models the choice process using a linear ballistic accumulator (Brown & Heathcote, 2008) combined
with choice set-dependent drift rates. Both of these models could potentially explain the reduction in
deferral probabilities in the presence of dominated options, when equipped with a deferral based time
limit, as the dominating options in these two models (like in AAM and MDFT) have higher preferences
and are thus more likely to cross the decision threshold before the deferral time limit.

However there are some effects that deferral-based extensions of these models would have diffi-
culty in capturing. For example, none of these three models have attempted to explain the alignability
effect. If these models cannot account for this effect in the absence of deferral, it is unlikely that they
would be able to capture its interaction with deferral. Similarly, MLBA could have difficulties in cap-
turing the influence of deferral on choice probabilities for the extreme options and for the attraction
and compromise effects. Essentially, this model assumes deterministic accumulation (given a drift rate
and starting point) implying that the explanation for these effects in this paper, which relies critically
on stochastic attribute sampling, does not extend to the MLBA model. For this reason MLBA may also
have trouble with the unique vs common attributes effect.

7.2. Alternate dynamic interpretations

The key insight of this paper is that choice deferral is a fundamentally dynamic phenomenon. This
is why a time limit mechanism, when implemented in AAM, is able to explain the dependence of
deferral on the composition of the choice set, and the relationship between various choice set effects
and the presence of deferral. This is also what allows us to successfully predict and fit choice
probability and decision time data in our experiment. A number of researchers have already argued
that dynamical processes are necessary in order to fully characterize choice behavior
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(e.g. Busemeyer & Townsend, 1993; Rieskamp, Busemeyer, & Mellers, 2006). The results of this paper
provide further evidence in favor of their claims. Deferral is intertwined with decision time, and only a
dynamic model of decision making can fully account for this relationship.

There are a number of different ways in which the dynamical properties of deferral can be concep-
tualized and implemented. In this paper we have suggested that deferral operates as a (probabilistic or
deterministic) time limit. According to this account decision makers determine a time limit to be used
prior to the decision. During the decision they keep a mental representation of the amount of time that
has passed in the decision. If the total time spent in the decision surpasses the deferral time limit the
decision is deferred. A mathematically identical way of formalizing this mechanism is as a random dis-
traction or disengagement probability. This interpretation does not require decision makers to explic-
itly determine a deferral time limit prior to the decision, or to keep track of decision time. Instead it
assumes that decision makers are sensitive to internal or external cues, which, when activated, cause
decision makers to terminate the decision task and shift their attention elsewhere. Choice is deferred
in free choices, if decision makers do not make a decision before being distracted. Presumably these
distractors are suppressed in forced choices, which cannot be deferred. In these settings decision mak-
ers needs to finish the decision and make an active choice before performing other tasks.

Another way of conceptualizing our deferral mechanism involves seeing deferral as an implicit
choice option, with its own accumulator. According to this interpretation decision makers aggregate
evidence supporting or opposing deferral, and choose to defer choice when the deferral accumulator
is the first to cross a decision threshold. Note that Busemeyer et al. (2006) have proposed a model of
deferral along these lines. Such a model has also been used in the go/no go paradigm which can be
seen as the simplest type of deferral-based choice task (Gomez, Ratcliff, & Perea, 2007).

There are many similarities between modeling deferral as a time limit and deferral as a separate
accumulator. Indeed if the deferral accumulator is independent of the accumulating preferences, that
is, if it does not depend on attribute attention, and is uninfluenced by lateral inhibition, then an
accumulation-based model of deferral is mathematically identical to the probabilistic time limit
model studied in this paper, and can under certain assumptions also be modeled using the Inverse
Gaussian distribution discussed with regards to our experiment. This is a point made by Simen
et al. (2011) who have proposed an accumulator based model for interval timing that is instantiated
using a sequential sampling process.

If this is not the case, as in Busemeyer et al.’s (2006) model, then there are some relevant differ-
ences between modeling deferral as an accumulator and modeling deferral as a time limit. Particu-
larly, a time limit mechanism would suggest that keeping all else equal, changing the composition
of the choice set, or other aspects of the decision task that affect preference accumulation, should
not affect the distribution of the deferral time limit, and thus overall deferral times. This is in contrast
to an accumulator mechanism, in which, for example, higher rates of accumulation for the choice
option should make deferral less likely (due to inhibition). For the same reason, exogenously manip-
ulating the evidence in favor of one or more of the available options should not affect the time at
which choice is deferred in the case of a deferral time limit, but can very well influence the time at
which an implicit deferral accumulator crosses the decision threshold. Finally, changes to the decision
threshold (e.g. by emphasizing speed over accuracy) would not affect the distribution of the deferral
time in the case of an exogenous time limit, but would certainly affect the time at which a deferral
accumulator would cross the decision threshold. Examining these diverging predictions should be
the topic of future work.

It may also be the case that there are some settings in which decision makers use a time limit for
deferral, and other settings in which they use a separate accumulator for deferral. These settings could
have to do with how the choice to defer the decision is framed. For example it is possible that framing
deferral as a return to the status quo (not having either of the options) leads to deferral being pro-
cessed as just another choice option. In contrast, if deferral is framed as allowing a search for more
information (as in Tversky & Shafir, 1992 and most of the research we discuss in this paper; also
Busemeyer & Rapoport, 1988; Gluth, Rieskamp, & Büchel, 2012) then decision makers may be more
likely to use a time limit. Future work should examine this issue in detail.

An interesting implication of the deferral option as an accumulator is that this arguably mirrors the
urgency signal in forced choice tasks. In some tasks it has been shown that as an individual spends
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longer deliberating, they accumulate evidence at a faster and faster rate (Cisek, Puskas, & El-Murr,
2009). This is indicative of an urgency signal that increases over time, in the same manner that an
accumulator for deferral would increase over time. It is possible to examine whether urgency and
deferral are represented by the same accumulator, but with different behavioral outcomes in different
tasks, as this would predict individual differences which correlate across tasks, and similar sensitivity
to changes in stimuli and task framing. Many of the relevant tools and methods have already been
developed to test different urgency signal assumptions and different models of forced choice which
incorporate collapsing thresholds. Future work should examine this potential link.

7.3. Confidence and accuracy

Regardless of the specific interpretation of the proposed deferral mechanism, the relationship it
creates between choice, deferral, and decision time has some important metacognitive implications.
There is strong experimental evidence suggesting that evaluation of choice confidence is negatively
related to the decision time, so that decision makers are likely to display the least amount of confi-
dence for decisions that take the most amount of time. This relationship has been the basis of a num-
ber of dynamic theories of decision confidence (Link, 2003; Pleskac & Busemeyer, 2010), which
assume that decision makers explicitly use decision time to form a confidence estimate. In this light,
the proposed deferral mechanism can be seen as a way of avoiding choice when the decision maker is
less confident about the accuracy of the decision. An obvious result of this is it would be possible to see
at what level of confidence different individuals elect to defer, and whether this provides an explana-
tion for individual differences. More fundamentally, by eliciting confidence at different time points it
would also be possible to test whether evidence for deferral is indeed being accumulated over time
and whether this is independent or dependent upon the choice set and other external factors.

This interpretation of deferral also suggests that a deferral time limit can be adaptive, as decision
confidence is strongly associated with decision accuracy. Thus decision makers are more likely to defer
choice when the choices are difficult and when they are most likely to make errors. That said accuracy
in a preferential choice task is a notoriously complex and controversial concept, and it is unclear
whether the average drift rate is a suitable normative criterion for evaluating decision accuracy in this
domain. But, such effects would still be present as long as decision makers believe that taking longer
to deliberate will make them more accurate.

A related point is how an individual alters the deferral threshold in response to changes in choice
value or the severity of the choice’s consequence. It may seem intuitive that individuals would delay
the deferral threshold for more important choices in an attempt to increase accuracy. However, most
people will anecdotally report that they frequently delay making important choices, and defer them to
a later time. We also show in Effect 2 that when the absolute values of the options are higher, it is less
likely that choice will be deferred. Therefore we believe it is more likely to be the choice thresholds
that react to the scale of decision consequence rather than threshold for deferral.

7.4. Sequential decision making

The prior experiments on deferral whose results we hope to explain, assume that decision makers
in a deferral task sample stored information without any explicit cost except for time. Some research-
ers have however examined decision making in closely related settings where information is exter-
nally provided and is monetarily costly. In these tasks decision makers need to evaluate the choice
options after each piece of evidence is presented and decide whether they want to make a decision,
or pay for more information (Busemeyer & Rapoport, 1988; Gluth et al., 2012). Theoretical models
in these sequential decision making tasks attempt to explain not only what decision makers will
choose, but also whether or not they will decide to obtain more costly information.

There are some differences between the deferral task considered in this paper and the sequential
decision making task outlined above. In addition to information being externally provided and costly,
the time at which decision makers can signal the desire to sample more information in the sequential
decision making task is fixed and exogenous. In contrast, the deferral task studied in this paper and in
previous experiments allows decision makers to defer choice at any time in the experiment. As a
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consequence, deferral experiments are not only interested whether or not decision makers defer their
choice, but also how long people take to defer choice and how the possibility of deferral influences
final choice probabilities.

Despite these differences, the two sets of tasks are very similar, and can be seen as relying on a
common set of insights. For example, many dynamic sequential decision making models assume that
decision makers choose to sample more information and avoid choice if a decision threshold has not
been crossed by the time the decision makers encounter the exogenously imposed time limit (see
again Busemeyer & Rapoport, 1988; Gluth et al., 2012). This is identical to the assumption in this
paper, that endogenous (but independent) time limits determine whether or not a decision is deferred.
This suggests that dynamic models of sequential decision making and models of choice deferral (such
as the one presented here) are fully compatible, and even complementary. In fact, combining the two
sets of models would be a reasonable next step in building better dynamical theories of preferential
decision making in free-choice settings.
7.5. Perceptual choice

The success of the deferral time limit, both when combined with AAM and independently of AAM’s
particular assumptions, indicates that sequential sampling models may provide particularly desirable
tools for modeling choice deferral. This in turn suggests that the relationship between deferral and
accumulation to threshold, and, in turn, the observed influence of deferral, should be observed in other
domains where these accumulation models have shown to be successful; domains such as perceptual
choice.

Indeed work in this area has consistently documented that more difficult choices, in which the dif-
ference in evidence supporting the available options is very small, take longer (e.g. Ratcliff & Rouder,
1998). Thus we should also expect these difficult choices to be more likely to be deferred, if deferral is
allowed. This would be analogous to the relative desirability effect discussed above. Likewise,
Teodorescu and Usher (2013) have found that the total sum of evidence also influences decision speed
indicating that we can also expect choices in which the sum of evidence is small to be more likely to be
deferred. This would be analogous to the absolute desirability effect. Some existing work has already
extended findings on multiattribute choice to perceptual domains (Trueblood et al., 2014), and it
seems that studying choice deferral in these domains is a good candidate for future work. After all,
low-level decisions, like preferential choices, are also often not forced.
7.6. Limitations

Although the approach we have studied in this paper is able to successfully account for a range of
behavioral effects, our results are ultimately limited in many important ways. Firstly, our experiment
did not examine the relationship between deferral and the specific attribute composition of the choice
set. This was due to the fact that our choice options were relatively naturalistic, involving popular
films, rather than the artificially generated options with explicitly presented attribute information,
that are typically used to study multi-attribute choice. While the naturalistic format does allow for
cleaner decision time data, as participants do not have to read large amounts of information while
deliberating, future work should attempt to examine the relationship between choice deferral and
decision time in settings where attribute information is known and inter-attribute relationships are
explicitly manipulated.

Relatedly our experimental test did not attempt to fit the deferral-based extension of AAM, LCA or a
related model. Rather it limited itself to fitting the deferral time limit with a highly simplified generic
decision time distribution. This, as above, was due to the fact that attributes were not observable in
our experiment. It was also a product of the complexity of these sequential sampling models, many
of which have not been fit to choice and decision time data in the absence of deferral. Ultimately,
in order to rigorously test these models’ ability to explain deferral effects, it will be necessary to fit
a complete model of choice deferral. One with both the deferral time limit and an appropriate
back-end process. This too should be the focus of future work.
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Conversely, our experiment was only limited to preferential choice. As discussed above, it is likely
that the observed relationship between deferral and choice probability also emerges in low-level per-
ceptual domains, such as those typically used to study decision time. These domains also allow for an
explicit characterization of response accuracy and error, as well as convenient techniques to manip-
ulate question difficulty. In order to establish the robustness of the proposed deferral-based time limit
mechanism, it is important to experimentally observe deferral decisions in these low-level domains.

Our paper also has some theoretical shortcomings. Experimental work in decision making has
examined the relationship between choice deferral and variables as diverse as presentation format,
personality, decision maker expertise, ideal points and aspirations, and goals (see Chernev et al.’s,
2015 review). These variables lie outside the descriptive scope of our model, and indeed, outside
the scope of most other existing cognitive decision models as well. Future work should modify these
models to incorporate the wide range of psychological variables influencing deferral probabilities in
preferential choice.
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